Смекни!
smekni.com

Проектирование рабочего оборудования одноковшового экскаватора (стр. 9 из 10)

Воспользовавшись методом плана сил, мы определили значение и направление силы Р1 = 790.6 кН.


Рис.20 План сил возникающих в стреле.

Выполним проверку:

ΣFx = 0;

ΣFy = 0;

ΣFx = 0

Р4 = 555.1 · cos54º = -324 кН;

Р3 = 492.5 · cos51.5º = 308.6 кН;

Р2 = 824.6 · cos47º = -560 кН;

Р1 = 790.6 · cos43.5º= 575.4 кН.

308.6 – 324 + 575.4 – 560 = 0

ΣFy = 0

Р4 = 555.1 · cos36º = -448 кН;

Р3 = 492.5 · cos 38.5º = 387 кН;

Р2 = 824.6 · cos43º = 604 кН;

Р1 = 790.6 · cos46.5º = -543 кН;

Исходные данные для расчета стрелы:

Р1 = 790.6 кН;

Р2 = 824.6 кН;

Р3 = 492.5 кН;

Р4 = 555.1 кН;

Р1X = 790.6∙ cos20º = 742.9 кН;

Р1Y = 790.6∙ cos80º = 137.28 кН;

Р2X = 824.6 ∙ cos85.5º = 800 кН;

Р2Y = 824.5 ∙ cos4.5º = 199.48 кН;

Р3X = 492.5 ∙ cos4º = 491.3 кН;

Р3Y = 492.5 ∙ cos86º = 34.3 кН;

Р4X = 555.1 ∙ cos7.5º = 550.3 кН;

Р4Y = 555.1 ∙ cos82.5º = 72.45 кН;

М1 = 492.5∙ 0.422 = 207.8 кНм;

q1 = 5.36 кНм – распределенная нагрузка от веса стрелы (для второго участка);

q2 = 8.99кНм – распределенная нагрузка от веса стрелы (для второго участка);

Схема распределений усилий в стреле.

Рассмотрим первый участок 0 ≤ Х1 ≤ 2.35 м:

а). Q1∙(Х1) + Р1Y + q1 ∙X1 = 0

Q1∙(Х1) = - Р1Y – q1 ∙X1

Q1∙(0) = - Р1Y – q1 ∙X1 = -137.28 – 0 = -137.28 кН

Q1∙(2.35) = - Р1Y – q1 ∙X1 = -137.28 – 2.35 ∙ 5.36 = -149.08 кН

б). М1∙(Х1) + Р1Y ∙(Х1)+ q1 ∙X1 ∙( X1/2) = 0

М1∙(Х1) = - Р1Y ∙(Х1) – q1 ∙X1 ∙( X1/2)

М1∙(0) = - Р1Y ∙(Х1) – q1 ∙X1 ∙( X1/2)= 0

М1∙(2.35) = - Р1Y ∙(Х1) – q1∙X1 ∙( X1/2)= - 137.28 ∙(2.35) – 2.35 ∙ 5.36 ∙( 2.35/2)= -337.4 кНм

в). N1∙(Х1) – Р = 0

N1∙(Х1) = Р= 742.9 кН


Рассмотрим второй участок 2.35 м ≤ Х2 ≤ 2.4 м:

а). Q2∙(Х2) + Р1Y- Р2Y + q1∙X = 0

Q2∙(Х2) = - Р1Y+ Р2Y - q1∙X2

Q2∙(2.35) = 199.48 - 137.28 - 5.36∙2.35 = 49.6 кН

Q2∙(2.4) = 199.48 - 137.28 - 5.36∙2.4 = 49.3 кН

б). М2∙(Х2) + Р1Y ∙(Х2) - Р2Y ∙(Х2 – l1) + q1 Х22 – l1) = 0

М2∙(Х2) = - Р1Y ∙(Х2) - Р2Y ∙(Х2 – l1) - q1∙ Х22 – l1)

М2∙(2.35) = 0 – 137.28∙2.35 – 5.36∙2.35∙(2.35/2) = - 337.4 кНм

М2∙(2.4) = 199.48∙(2.4 – 2.35) – 137.28∙2.4 – 5.36∙2.4∙(2.4/2) = -334.9кНм

в). N1∙(Х2) – Р + Р = 0 N1∙(Х2) = Р– Р = 742.9 – 800 = -57.1 кН

Рассмотрим третий участок 0 м ≤ Х3 ≤ 1.83 м:

а). Q3∙(Х3) – Р4Y- q2 ∙ X3 = 0

Q3∙(Х3) = Р4Y+q2 ∙ X3

Q3∙(0) = Р4Y+ q2 ∙X3 = 72.45 кН

Q3∙(1.83) = Р4Y+ q2 ∙X3 = 72.45 + 8.99∙1.83= 88.9 кН

б). - М3∙(Х3) – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2) = 0

М3∙(Х3) = – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2)

М3∙(0) = 0 кНм

М3∙(1.83) = – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2)= - 8.99 ∙1.83 ∙ (1.83 /2) – 72.45∙1.83 = -269.1 кНм

в). N3∙(Х3) + Р= 0 N3∙(Х3) =- Р = - 550.3 кН

Рассмотрим четвертый участок 1.83 ≤ Х4 ≤ 2.64 м:

а). Q4∙(Х4) + Р3Y – Р4Y - q∙X4 = 0 Q4∙(Х4) = - Р3Y+ Р4Y + q∙X4

Q4∙(1.83) = - Р3Y + Р4Y + q∙X4 = 8.99 ∙1.83 + 72.45 - 34.3 = 54.6 кН

Q4∙(2.64) = - Р3Y + Р4Y + q∙X4 = 8.99 ∙2.64 + 72.45 - 34.3= 61.88 кН

б). - М4∙(Х4) – М1 – Р4Y ∙(Х4) + Р3Y ∙(Х4 – l1) - q∙X4 ∙( X4/2) = 0

М4∙(Х4) = – М1 – Р4Y ∙(Х4) + Р3Y ∙(Х4 – l1) - q∙X4 ∙( X4/2)

М4∙(1.83) =- 207.8– 72.45 ∙(1.83) + 0 – 8.99∙1.83∙( 1.83/2) = - 355.43 кНм

М4∙(2.64) =- 207.8– 72.45 ∙(2.64) + 34.3(2.64-1.83) – 8.99∙2.64∙( 2.64/2) = =- 402.6 кНм

в). N4∙(Х4) – Р+ Р = 0

N4∙(Х4) = Р- Р = 491.3 – 550.3 = - 59 кН

Произведем расчет пальцев проушин стрелы.

1. Расчет пальца проушины стрелы для крепления рукояти:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 75 мм – диаметр пальца;

LПАЛ = 376 мм – длина пальца (определяется исходя из ширины рукояти);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3

Знаязначение усилия в шарнире стрелы РРУК = 555.1 кН, определим τПАЛ, МПа:

τПАЛ = Ррук / 2∙ А ПАЛ = 555100 / 2∙ 4415.625 = 62.85 МПа

Определим напряжение возникающие в пальце стрелы, МПа:


σПАЛ = Ррук ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 1260 МПа

В качестве материала пальца используем сталь 40ХН σтек = 1450 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

2. Расчет пальца проушины стрелы для крепления гидроцилиндра рукояти:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 70 мм – диаметр пальца;

LПАЛ = 236 мм – длина пальца;

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 702 = 3846.5 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 353 = 33656.875 мм3

Знаязначение усилия гидроцилиндра стрелы РГЦР = 492.5 кН, определим τПАЛ, МПа:

τПАЛ = Ргцр / 2∙ А ПАЛ = 492500 / 2∙ 3846.5 = 64 МПа

Определим напряжение возникающие в пальце рукояти, МПа:

σПАЛ = Ргцр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 702 МПа


В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

3. Расчет пальца проушины стрелы для крепления гидроцилиндра стрелы:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 120 мм – диаметр пальца;

LПАЛ = 376 мм – длина пальца (определяется исходя из ширины стрелы);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 1202 = 11304 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 603 = 169560 мм3

Знаязначение усилия гидроцилиндра стрелы РСТР = 824.6 кН, определим τПАЛ, МПа:

τПАЛ = Рстр / 2∙ А ПАЛ = 824600 / 2∙ 11304 = 36 МПа

Определим напряжение возникающие в пальце стрелы, МПа:

σПАЛ = Рстр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 457 МПа


В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

4. Расчет пальца проушины для крепления стрелы к базе экскаватора:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 120 мм – диаметр пальца;

LПАЛ = 595 мм – длина пальца (определяется исходя из ширины стрелы);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 1202 = 11304 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 603 = 169560 мм3

Знаязначение усилия в шарнире стрелы РБ = 790.6 кН, определим τПАЛ, МПа:

τПАЛ = Рб / 2∙ А ПАЛ = 790600 / 2∙ 11304 = 34.9 МПа

Определим напряжение возникающие в пальце стрелы, МПа:

σПАЛ = Рб ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 693.5 МПа

В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

Определим сечение стрелы в шарнире соединения стрелы с базой экскаватора 1-1.

Определим размеры поперечного сечения стрелы 1-1. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

1. F1 = b ∙ (H - h) = 0.595 ∙ (0.234 – 0.120) = 0.06783 м2

X1 = b / 2 = 0.2975 м

Y1 = H / 2 = 0.117 м

Определим момент инерции сечения:

JX1 = b / 12 ∙ (H3 – h3) = 0.595 / 12 ∙ (0. 2343 – 0. 1203) = 0.0005536 м4

Определим момент сопротивления относительно нейтральной линии: