Смекни!
smekni.com

Механизмы машины (стр. 1 из 2)

Вариант 7

1.1.5 Функциональная классификация механизмов. Приведите примеры каждого вида (класса) механизмов

Система тел, предназначенная для преобразования движения одного или нескольких тел в требуемые движения других тел, называется механизмом. С точки зрения их функционального назначения механизмы машины делятся на следующие виды:

1. Механизмы двигателей и преобразователей.

2. Передаточные механизмы.

3. Исполнительные механизмы.

4. Механизмы управления, контроля и регулирования.

5. Механизмы подачи, транспортировки, питания и сортировки обрабатываемых сред и объектов.

6. Механизмы автоматического счета, взвешивания и упаковки готовой продукции.

Механизмы двигателей осуществляют преобразование различных видов энергии в механическую работу. Механизмы преобразователей (генераторов) осуществляют преобразование механической работы в другие виды энергии. К механизмам двигателей относятся механизмы двигателей внутреннего сгорания, паровых машин, электродвигателей, турбин и др. К механизмам преобразователей относятся механизмы насосов, компрессоров, гидроприводов и др.

Передаточные механизмы (привод) имеют своей задачей передачу движений от двигателя к технологической машине или исполнительным механизмам. Задачей передаточных механизмов является уменьшение частоты вращения вала двигателя до уровня частоты вращения основного вала технологической машины. Например, редуктор.

Исполнительными механизмами называются те механизмы, которые непосредственно воздействуют на обрабатываемую среду или объект. В их задачу входит изменение формы, состояния, положения и свойств, обрабатываемых среды или объекта. К исполнительным механизмам, например, относятся механизмы прессов, деформирующих обрабатываемый объект, механизмы грохотов в энергозерноочистительных машинах, разделяющих среду, состоящую из зерна и соломы, механизмы металлообрабатывающих станков и т.д.

Механизмами управления, контроля и регулирования называются различные механизмы и устройства для контроля размеров обрабатываемых объектов, например, механические щупы, следующие за фрезой, обрабатывающей криволинейную поверхность, и сигнализирующие об отклонении фрезы от заданной программы обработки; регуляторы, реагирующие на отклонение угловой скорости главного вала машины и устанавливающие нормальную заданную угловую скорость этого вала и т.д. К этим же механизмам относятся и измерительные механизмы по контролю размеров, давления, уровней жидкостей и т.д.

К механизмам подачи, транспортировки, питания и сортировки обрабатываемых сред и объектов относятся механизмы винтовых шнеков, скребковых и ковшевых элеваторов для транспортировки и подачи сыпучих материалов, механизмы загрузочных бункеров для штучных заготовок, механизмы подачи пруткового материала в высадочных автоматах, механизмы сортировки готовой продукции по размерам, весу и конфигурации и т.д.

Механизмы автоматического счета, взвешивания и упаковки готовой продукции применяются в машинах выпускающих массовую штучную продукцию. Эти механизмы могут быть и исполнительными механизмами, если они входят в специальные машины, предназначаемые для этих операций. Например, в машинах для расфасовки чая механизмы взвешивания и упаковки являются исполнительными механизмами.

Несмотря на разницу в функциональном назначении механизмов отдельных видов, в их строении, кинематике и динамике много общего.

Например, механизм поршневого двигателя, механизм кривошипного пресса и механизм привода ножа косилки имеют в своей основе один и тот же кривошипно-ползунный механизм. Механизм привода резца строгального станка и механизм роторного насоса имеют в своей основе один и тот же кулисный механизм. Механизм редуктора, передающего движение от двигателя самолета к его винту, и механизм дифференциала автомобиля имеют в своей основе зубчатый механизм.

1.2.3 Соотношения между угловыми скоростями, мощностями и крутящими моментами на валах зубчатой передачи

Передаточное отношение от колеса 1 к колесу n

U1n1n

где ω1 – угловая скорость вала 1,

ωn – угловая скорость вала n.

КПД зубчатой передачи:

η=Рn1

где Р1 – мощность на валу 1 (входном),

Рn – мощность на валу n (выходном).

Крутящие моменты:

Т1= Р11 – вал 1,

Тn= Рnn – вал n.

Отсюда

Тn= Т1∙ U1n∙ η

1.3.5 Трение в кинематических парах. Виды и характеристики трения: трение качения, трение скольжения. Понятия о коэффициентах трения скольжения и трения качения. Угол трения

Когда одно тело соприкасается с другим, то независимо от их физического состояния возникает явление, называемое трением, которое представляет собой сложный комплекс механических, физических и химических явлений. В зависимости от характера относительного движения тел различают трение скольжения – внешнее трение при относительном скольжении соприкасающихся тел и трение качения - внешнее трение при относительном качении соприкасающихся тел. Сила, препятствующая относительному движению контактирующих тел, называется силой трения.

Сила трения скольжения уменьшается, если соприкасающиеся тела смазаны специальными смазочными материалами, причём, если материал – жидкость, полностью разделяющая контактирующие поверхности, то трение называется жидкостным. При совершенном отсутствии смазки имеет место сухое трение. Если смазывающая жидкость не полностью разделяет трущиеся поверхности, то трение называется полужидкостным или полусухим в зависимости от того, какой из двух видов трения преобладает.

Основные положения:

1. Сила трения скольжения пропорциональна нормальному давлению.

2. Трение зависит от материалов и состояния трущихся поверхностей.

3. Трение почти не зависит от величины относительной скорости трущихся тел.

4. Трение не зависит от величины поверхностей касания трущихся тел.

5. Трение покоя больше трения движения.

6. Трение возрастает с увеличением времени предварительного контакта соприкасающихся поверхностей.

При трении скольжения несмазанных тел, коэффициент трения зависит от нормального давления. В большинстве технических расчетов пользуются формулой

FT=f∙Fn

где f – среднее значение коэффициента трения, определяемого из опыта и принимаемого постоянным.

FT – сила трения.

Fn – нормальное давление.

При трении скольжения смазанных тел вводят понятие коэффициента жидкостного трения, который зависит от скорости υ движения слоев смазки друг относительно друга, от нагрузки р и от коэффициента вязкости μ.

При качении необходимо преодолеть некоторый момент МТ, называемый моментом трения качения, величина которого равна:

МТ=F∙k

где: k – плечо трения качения или коэффициент трения качения, имеет размерность длины. Определяется опытным путем для различных материалов.

При трении скольжения коэффициент трения и угол трения связаны следующей зависимостью:

f=tgφ

где φ – угол трения.

ременный передача скорость вал зубчатый


2.1.1 Разъемные соединения. Разновидности разъемных соединений. Области применения различных типов разъемных соединений

Разъёмными называют соединения, разборка которых происходит без нарушения целостности составных частей изделий. Наиболее распространёнными в машиностроении видами разъёмных соединений являются: резьбовые, шпоночные, шлицевые, клиновые, штифтовые и профильные.

Резьбовым называют соединение составных частей изделия с применением детали, имеющей резьбу. Например, болтовое, шпилечное, винтовое. Резьбовые соединения широко применяются в машиностроении и приборостроении для неподвижного закрепления деталей относительно друг друга. Например, закрепление электродвигателя и редуктора на раме.

Шпоночными соединениями называют разъёмные соединения составных частей изделий с применением шпонок. Шпоночные соединения состоят из вала, шпонки и ступицы колеса. Шпонка представляет собой стальной брус, который вставляется в пазы вала и ступицы. Она служит для передачи вращающего момента между валом и ступицей колеса, шкива, звездочки. Шпоночные соединения широко применяются во всех отраслях машиностроения при малых нагрузках и необходимости легкой сборки, разборки. Например, крепление зубчатого колеса на валу редуктора.

Шлицевые соединения образуются выступами – зубьями на валу и соответствующими впадинами - шлицами в ступице. Рабочими поверхностями являются боковые грани зубьев. Шлицевое соединение условно можно рассматривать как многошпоночное. Шлицевые соединения широко распространены в машиностроении. Применяются там же, где и шпоночные соединения, но при более больших нагрузках.

Клиновые соединения по назначению различают: силовые, в которых клинья, называемые крепежными, служат для прочного соединения деталей машин, и установочные, в которых клинья, называемые соответственно установочными, предназначены для регулирования и установки деталей машин в нужном положении. Силовые клиновые соединения применяют, например, при скреплении клином стержня со втулкой. Установочные клинья применяют для регулировки и установки подшипников валков прокатных станов и т. п. Широко используются в машиностроении.

Штифтовые соединения применяют для крепления деталей (соединение вала со втулкой) или для взаимного ориентирования деталей, которые крепят друг к другу винтами или болтами (соединение крышки и корпуса редуктора, соединение стойки и основания и др.).

Профильное соединение - соединение деталей машин по поверхности их взаимного контакта, имеющей плавный некруглый контур. Образующая поверхность профильного соединения может быть расположена как параллельно осевой линии вала, так и наклонно к ней. В последнем случае соединение наряду с крутящим моментом может передавать также и осевую нагрузку.