Смекни!
smekni.com

Расчёт на прочность кузова автомобиля ВАЗ 2108 (стр. 2 из 4)

Все контейнеры по углам снабжены специальными фитингами для крепления, а перевозящие их КМ имеют специальные замки, смонтированные на платформе или раме.

Кабина - это рабочее место водителя или тракториста, где он проводит большую часть рабочего времени. Внутри кабины расположены все органы управления, сиденья водителя и пассажиров, при необходимости монтируются спальные места. Она является важным составным элементом грузовых КМ и тракторов.

Конструкция кабин КМ во многом определяется общим назначением машины и особенностями ее эксплуатации. Этим обусловлено большое разнообразие конструктивных схем каркасов и кабин. Кабины классифицируют следующим образом:

по конструктивному признаку конструкции - закрытые, полуоткрытые (навесы), открытые. Закрытые кабины состоят из каркаса (в каркасных кабинах), передней, задней и боковых стенок, крыши, пола, окон и дверей, тепло-, звуко- и виброизоляционных устройств и элементов;

по технологическому исполнению - каркасные (безопасные) с балками и поясами безопасности и бескаркасные. При массовом производстве кабины изготавливают из стали бескаркасными, панельными.

При небольшом объеме производства кабины выполняют обычно каркасными, простой формы с обшивкой из металла или из полимерных материалов;

по числу мест - одно-, двух- и многоместные. Кабины грузовых КМ многоместные и могут иметь один или два ряда сидений; на тракторах одноместные кабины применяют для классов 6-20 Кн, двухместные - для классов 30 -150 Кн, трехместные - для классов 250-350 Кн;

по типу дверей - с распашными и выдвижными дверями;

по способу изоляции - кабины, выполненные с тепло- и звукоизолирующей прослойкой и без изоляции;

по компоновке - с отдельным отсеком для двигателя, закрытым капотом и бескапотные. В бескапотных кабинах, как правило, двигатель расположен непосредственно под кабиной. Преимуществами таких кабин является хороший обзор дороги для водителя, возможность увеличения размеров грузовой платформы и улучшения доступа к двигателю при откидывании кабины вперед. В таком положении кабина фиксируется специальным упором.

Лобовое стекло кабины может быть расположено вертикально, наклонено вперед или назад на 15... 20°. При наклоне назад обеспечивается хорошая обзорность из кабины и обтекаемость ее набегающим воздухом, при наклоне вперед - отсутствуют блики на стекле от подсветки приборов в темное время суток.

Цельнопластмассовая бескаркасная кабина панельно-оболоченного типа представлена на рис. 1.2. Ее конструкция полностью соответствует мелкосерийному характеру производства, рассчитана на контактный метод формования элементов из полиэфирного стеклопластика холодного отверждения.

Ко всем этим конструкциям предъявляют общие требования: обеспечение необходимых значений жесткости, прочности и долго вечности при минимальной массе, технологичности, минимальной стоимости.

Кроме того, при создании кузова и кабины необходимо выполнение следующих требований: защита людей при авариях и других видах воздействий; соответствие уровня вибраций и шумов действующим нормам; свободный доступ к системам, узлам и агрегатам КМ при их обслуживании; хорошая обзорность, удобство посадки и высадки, высокие эргономические качества; удобство погрузки и разгрузки перевозимых грузов; герметичность и достаточная тепло- и шумоизоляция; выполнение требований эстетики; обеспечение высокой коррозионной стойкости и др.

Рис. 1.2. Цельнопластмассовая бескаркасная кабина панельно-оболоченного типа:

1- внешняя оболочка; 2-панель топливного бака; 3-панель пола; 4-усилитель основания; 5-основание; 6-рама лобового стекла; 7-панель крыши; 8-заливная горловина бака; 9-задняя внутренняя панель

1.1 Моделирование конструкций конечными элементами

Основой построения расчетной модели служит библиотека конечных элементов. Моделирование конечными элементами предполагает достижение трех целей:

моделирование геометрии деформируемого тела;

моделирование упруго-массовых свойств конструкции;

моделирование граничных условий.

Геометрия конструкции моделируется совокупностью элементов различной размерности и различных форм, представляющих три группы:

одномерные элементы, имеющие форму прямой линии или дуги окружности;

двумерные элементы треугольной и четырехугольной формы;

трехмерные элементы - тетраэдры, гексаэдры и пятигранники.

При моделировании требуемых упруго-массовых свойств конструкции кроме геометрии конечных элементов учитываются их свойства, то есть способность воспринимать нагрузку и испытывать деформацию определенного вида. Так, например, некоторая часть одномерных элементов конструкции может работать только на растяжение-сжатие, а другая может к тому же воспринимать изгиб и кручение.

Для моделирования граничных условий и массовых свойств конструкции предназначены специальные элементы, образующие группу «другие» (other).

Расположение элемента в пространстве зависит от координат узлов, принадлежащих элементу. В узлах определяются обобщенные узловые смещения. Узловыми смещениями могут быть компоненты вектора перемещений вдоль осей координат и углы поворота элемента в узлах вокруг осей координат. Обобщенные узловые смещения обозначаются термином степени свободы или сокращенно DOF (degreesoffreedom).

Набор или список степеней свободы модели зависит от типа элементов, используемых при моделировании.

Так, в узлах элементов работающих на изгиб и кручение (элементы балки и оболочки) определены все шесть компонентов смещений, а в узлах трехмерных элементов - только перемещения вдоль осей координат. Если в модели нет элементов, работающих на изгиб, то список степеней свобод не будет содержать углы поворота элементов в узлах. Это не означает, что их нет, просто углы поворота не оказывают влияние на величину полной потенциальной энергии конструкции.

1.2 Нагрузочные режимы

В процессе эксплуатации на КМ действуют нагрузки, возникающие при ее движении по дорожной поверхности, которые обычно носят случайный характер. Их можно подразделить на случайные и детерминированные. Эти нагрузки действуют на несущую систему КМ и образуют пространственную систему. Определение величин и направлений нагрузок - достаточно сложная задача, поэтому при расчетах из всей совокупности учитывают нагрузки, которые возникают в экстремальных условиях эксплуатации (предельные нагрузки) (рис. 1.2.1).

Рассмотрим экстремальные детерминированные нагрузки и соответствующие им режимы эксплуатации. Статические расчеты несущих систем КМ выполняют для симметричных (изгиб), кососимметричных (кручение) и боковых (в горизонтальной плоскости) нагрузок.

Вертикальную симметричную нагрузку RZ(рис. 1.2.1, а) можно вычислить, используя выражение

где GHj - вес i-го неподрессоренного узла или агрегата КМ, kД -коэффициент динамичности, принимаемый в зависимости от типа КМ: для грузовых

kД = 3,0; для КМ высокой проходимости kД = 3,5...4,0; для легковых КМ и автобусов kД =2,0...2,5; п - число колес, взаимодействующих с опорной поверхностью.

Вертикальная несимметричная нагрузка возникает при наезде колесом на препятствие и при вывешивании колеса (или колес) (рис. 1.2.1, б). В первом случае вертикальную несимметричную нагрузку можно определить по приведенной выше формуле, учитывая, что kД = 1,5 для грузовых КМ;

kД = 1,8 для автомобилей высокой проходимости; kД = 1,3 для легковых КМ и автобусов.

Рис. 1.2.1. Расчетные режимы нагружения: а - вертикальная симметричная нагрузка; б - наезд колесом на препятствие и вывешивание колеса; в - горизонтальная нагрузка при движении по криволинейной траектории; г - наезд колесом на ступенчатое препятствие; д - движение КМ по воде

Момент, закручивающий несущую систему, равен

Здесь RПР, RЛ- нагрузки на правом (R1) и левом (R2) передних колесах соответственно, В - колея.

При расчете несущей системы на изгиб от действия вертикальных нагрузок необходимо учитывать координаты точек их приложения. Динамические нагрузки в этом случае характеризуются эмпирическими коэффициентами (например, коэффициентом динамичности).

Боковые силы действуют на КМ при ее движении по криволинейной траектории (рис. 1.2.1, в), в случае появления несимметричных нагрузок при тяговом и тормозном режимах, а также при боковом столкновении с препятствием.

Максимально возможная центробежная сила Fyдо переворота при криволинейном движении определяется следующим выражением (см. рис. 1.2.1. в)

где Ry – реакция от дороги на колёса, zM – расстояние от опорной поверхности до центра масс КМ. При этом

lЗ, lП – расстояние соответственно от задней и передней осей до центра масс. Для случая на рис. 1.2.1, г

RZ0 - статическая нагрузка на переднюю ось; в = arctg[l — H/rd], где rd - динамический радиус колеса; Н - высота препятствия.

Наибольшие горизонтальные нагрузки возникают при повороте и боковом ударе о препятствие и могут составлять до 80 % от веса КМ, приходящегося на ось; в случае несимметричных нагрузок при тяговом и тормозном режимах - порядка 8 % от веса КМ.

При боковом ударе передним колесом о препятствие на КМ действуют нагрузки, наибольшая из которых изгибает несущую систему в горизонтальной плоскости. В случае экстремального режима боковая нагрузка пропорциональна весу КМ и коэффициенту kσсцепления колеса с поверхностью дороги (с учетом коэффициента динамичности):