КУРСОВОЙ ПРОЕКТ
На тему
«Расчёт на прочность кузова автомобиля ВАЗ 2108»
2006г.
Содержание
Введение
1. Обзор существующих конструкций
1.1 Моделирование конструкций конечными элементами
1.2 Нагрузочные режимы
2. Построение математической модели
2.1 Описание кузова автомобиля ВАЗ 2108(09)
2.2 Ход построения модели кузова автомобиля ВАЗ 2108(09)
2.3 Ход проверки на прочность кузова автомобиля ВАЗ 2108(09)
Литература
Введение
В соответствии с ГОСТ обязательно проведение ходовых испытаний автомобиля. Сами ходовые испытания не являются дорогостоящими, но для выбора наилучшей конструкции кузова необходимо разработать и создать несколько его вариантов (пилотные версии). Каждая деталь изготавливается вручную, что приводит к потере времени и средств. Но наиболее дешёвым и быстрым является построение математическим способом модели и её расчётная проверка. Затем на основе проведённых исследований выбрать конструкцию. Создать её и испытания проводить лишь для доказательства правильности выполненной работы.
В настоящее время САПР (системы автоматического проектирования) используются практически всеми компаниями про проектированию автомобилей. К этим системам относится и такая программа, как SolidWorks, которая является одним из лидеров в 3D САПР. Основной задачей таких программ является создание простой и приемлемой для пользователей методики построения расчётной модели, позволяющей заменить натурные испытания.
В начале определяются основные размеры с реальной конструкции кузова: габаритные, мм (длина – 3500, ширина – 1490, высота - 1200) [1], несущих элементов, конструктивные. По ним происходит построение объёмной геометрической модели в программе SolidWorks.
Модель строится в виде цельной детали, мелкие детали, не влияющие на прочность не показываются. Материалом кузова принимаем сталь предназначенную для изготовления кузовных деталей – Ст3. Кузов автомобиля ВАЗ 2108 относится к оболочковым кузовам. Оболочковые кузова выполняются из крупных штампованных деталей, наружных и внутренних панелей, соединённых точечной сваркой в замкнутую силовую систему преимущественно из стального листа, толщиной 0,6…0,8 мм.
Кузова такого типа наиболее распространены, так как обладают технологическими преимуществами - автоматическая сварка панелей может выполняться на конвейере).
Нагрузками, действующими на автомобиль являются нагрузки от дороги, максимальное значение которых будет передаваться на кузов через подвеску при её полном сжатии. Т.о. для упрощения расчётов принимаем допущение, что подвеска передаёт все реакции, от дороги меняя их лишь по направлению, но не по величине.
Как известно жесткость кузова обеспечивается применением лонжеронов. На основании этого действует правило, что при разрушении или нарушения параллельности лонжеронов эксплуатация автомобиля невозможна. Будет происходить неконтролируемый занос. Т. Е. из выше вышесказанного следует, что основное внимание при расчёте необходимо уделить определению допустимых нагрузок на лонжероны.
Расчёт производим в статистике с применением коэффициента динамической нагрузки Кд = 1,1…2.
Часть кузова, состоящая из продольных и поперечных лонжеронов, была закреплена соответствующим образом и нагружена, после чего будет выполнен расчет на прочность в программах CosmosWorks, Nastrane и др. Далее, определив расчёт лонжеронов на усталостную прочность и определим максимальное количество циклов нагружения в период эксплуатации кузова.
1. Обзор существующих конструкций
В современных условиях перед проектировщиками машиностроительных конструкций стоит сложная задача: в кратчайшие сроки спроектировать конструкцию, близкую к оптимальной по ряду основных параметров. Высокий уровень конструкции, в том числе рам, кузовов, кабин, обеспечивается только в том случае, если качественно спроектированная и изготовленная конструкция соответствует предъявляемым к ней требованиям.
В этой главе особое внимание уделено вопросам проектирования конструкций на базе накопленного в мировой и отечественной практике опыта использования современных высокоэффективных методов расчета, основным из которых является МКЭ, а также рассмотрены особенности проектирования с использованием высококачественных материалов, в том числе нетрадиционных (алюминиевых сплавов, композиционных материалов и др.).
Несущей системой называют конструкцию, которая воспринимает все нагрузки, возникающие при ее движении, и служит основанием для крепления узлов и агрегатов КМ (колёсная машина). Рама является важнейшим элементом большинства КМ. Характерно, что в случае выхода из строя рамы, как и любой другой несущей системы, невозможна эксплуатация КМ, а ремонтные работы трудоемки и дорогостоящи.
Рамы подразделяют на лонжеронные, хребтовые и шарнирные. Лонжеронные рамы состоят из двух лонжеронов, связанных между собой поперечинами. Места соединений лонжеронов и поперечин называют узлами (рис. 1.1 а, б). Хребтовые рамы имеют одну центральную несущую систему, составленную из картеров трансмиссии и патрубков. Эти рамы не распространены ввиду сложности обслуживания трансмиссий, повышенных требований к качеству материала, изготовлению и сборке по сравнению с лонжеронными.
Шарнирные рамы применяют, как правило, на КМ, движение по криволинейной траектории которой осуществляется за счет поворота шарнирно-соединенных секций (сочлененные КМ).
Рис. 1.1 Лонжеронные рамы КМ:
а - швеллерного типа; б – Z-образного профиля
Кузов КМ служит для размещения водителя, пассажиров, грузов и защиты их от внешних воздействий. Он является важнейшим конструктивным, наиболее ответственным, материалоемким и дорогостоящим элементом КМ. К кузову крепятся все механизмы КМ. Его форма определяет комфортабельность и внешний вид машины. На кузов приходится примерно половина полной массы КМ (для легковых 50... 52 %) и стоимости (для легковых машин 47 ... 49 %), он сложен в изготовлении.
Общий, пробег КМ в эксплуатации непосредственно зависит от долговечности несущей системы кузова.
Кузов может быть цельным или состоять из отдельных, элементов (кабина, моторное отделение, грузовая платформа). Он включает в себя корпус, двери и люки, оперение (крылья, подножки, облицовки), сиденья, дополнительное оборудование (системы вентиляции и отопления). Корпус кузова КМ, как правило, является несущей системой. Он может состоять из основания, боковин, передней и задней частей, крыши и иметь перегородки. Все остальные элементы кузова (двери, капот, крылья, облицовка и др.) не относятся к несущим. Отметим, что обычно создают кузова с несущим корпусом, так как они имеют меньшую массу, позволяют снизить центр масс, улучшить плавучесть КМ и т.д. Его выполняют каркасным; полукаркасным и бескаркасным (панельным или оболочковым). Облицовку кузова и элементы каркаса изготавливают из металлов (сталь, алюминий), пластмасс и древесины. Облицовка может быть монослойной, коробчатой и многослойной. Многослойная (чаще трехслойная) обладает важным преимуществом - высокой прочностью и жесткостью при малой массе.
Кузова легковых КМ выполняют закрытыми или открытыми со съемным верхом. Для последних характерны малые габаритные размеры и масса, невысокая стоимость, они позволяют обеспечить хорошую обзорность экипажу и оперативность его посадки и высадки при снятом тенте. Их недостатком является плохая защита от климатических и других воздействий.
Кузова автобусов изготавливают в виде фургонов или вагонного типа. Фургоны устанавливают на шасси КМ повышенной и высокой проходимости, поскольку такие автобусы предназначены для бездорожья и разбитых грунтовых дорог. По сравнению с кузовами вагонного типа (применяемыми соответственно в автобусах для дорог с асфальтобетонным покрытием) фургоны имеют на 25...30 % меньший коэффициент использования габаритных размеров. Однако они универсальны (их можно устанавливать на различные шасси и прицепы) и позволяют упростить ремонт и обслуживание КМ. Различают кузова типа фургонов каркасные и бескаркасные. Наиболее перспективны бескаркасные, так называемые трехслойные конструкции, обладающие высокими прочностью и жесткостью при малой массе, хорошими акустическими и теплоизоляционными характеристиками.
Кузова грузовых КМ подразделяют на закрытые (фургоны) и открытые со съемным брезентовым тентом. Закрытые кузова позволяют обеспечить защиту грузов от внешних воздействий, но в отличие от открытых обладают большей массой и стоимостью. В основном кузова представляют собой бортовую платформу с опрокидывающимися бортами (одним задним или также и боковыми).
Платформа имеет продольные и поперечные силовые балки и настил из досок, фанеры, ДСП, металлических профилей или листов, армированных пластмасс. Борта выполняют из досок, скрепленных металлическими стойками, стальных штампованных элементов или прокатных профилей, скрепленных болтами или сваренных, а также алюминиевых профилей. Размеры откидывающихся бортов обусловлены рядом требований (эргономическими, минимальной массой, высотой подъема и др.).
Кузов грузовой КМ закрепляют на раме в нескольких точках. Если кузов длинный, то часть опор снабжают упругими элементами (пружины или резиновые блоки).
В настоящее время широко распространены новые типы кузовов, совмещающих функции кузова и упаковки груза, - контейнеры. При использовании контейнеров ускоряется и удешевляется доставка грузов, обеспечивается их сохранность и безопасность. В соответствии с международными соглашениями приняты следующие типы контейнеров: универсальный (прямоугольный, закрытый), открытый (с брезентовым верхом), платформа со стойками, изотермический (с теплоизоляцией), рефрижераторный (с холодильным агрегатом), цистерна, составной (комбинация из нескольких малых контейнеров). Их размеры определяются нормами ИСО.