14. Осциллографы и мультиметры
Осциллографы предназначены для измерения параметров и визуального анализа формы сигналов в любых электронных и электрических системах автомобиля. Подключение к исследуемой цепи осуществляется посредством измерительных кабелей и датчиков.
Осциллограф — электронный прибор, позволяющий, в отличие от тестера, увидеть не только средние значения напряжения н измеряемых цепях, но и процесс изменения напряжения во время работы на выводах проверяемых узлов автомобиля. При помощи осциллографа можно составить полную картину работы системы управления двигателем и сделать соответствующие выводы.
Технические характеристики осциллографа можно подразделить на несколько групп: характеристики входов и точность, частотные характеристики, синхронизация и сервисные возможности.
У входной цепи осциллографа, как и у любой другой, есть два вывода — положительный и отрицательный. Если измерить тестером сопротивление между любым выводом питания осциллографа и любым входным выводом, то получится очень большое сопротивление, так как осциллограф, подобно большинству современных измерительных приборов, имеет дифференциальную входную цепь, которая обеспечивает развязку входных и питающих цепей прибора. Если ваш прибор имеет дифференциальный вход, можно смело подключать его выводы к любым точкам бортовой проводки, не заботясь о том, что если минус попал на плюс, то обязательно что-нибудь замкнет. Исключение составляет вторичная цепь зажигания — напряжения там составляют десятки киловольт, и для просмотра этих напряжений используются специальные емкостные датчики, не имеющие непосредственного контакта с измеряемой цепью, — обычный вход осциллографа просто сгорит при подключении его к этой цепи.
Некоторые автомобильные приборы могут иметь и другие типы входных цепей, которые не обеспечивают развязки входов от питающих цепей. Это сделано или в связи с дополнительными функциями измерительной цепи (например, совмещение измерительной цепи с цепью отключения катушки зажигания, как в приборах фирмы Sun и Bosch на входах контроля первичной обмотки катушки зажигания), или для снижения себестоимости изделия. В любом случае необходимо иметь информацию о том, обеспечивает ли входная цепь прибора развязку от питающих напряжений. Тестер имеет плюсовой и минусовой щупы (соответственно красный и черный провода).
В большинстве описаний приборов приводится такая характеристика, как точность измерения, погрешность измерения или класс точности прибора. Например, если погрешность измерения равна 10 %, это означает, что измеренное напряжение может на самом деле находиться в диапазоне от 11,4 до 13,9 В и точнее его можно измерить только прибором, имеющим меньшую погрешность измерения. Желательно, чтобы был еще указан способ вычисления погрешности измерения — от измеряемой величины или от максимальной (например, при измерении напряжения в 1 В на шкале в 100 В, если прибор имеет погрешность 5 % максимального значения шкалы, получаются показания от -4 до +6 В, а если проводить те же измерения на шкале в 2 В, то разброс значений будет от 0,9 до 1,1 В).
Частотные характеристики гораздо более важны для осциллографа, нежели для тестера. Все измерения тестера ограничиваются частотой в единицы герц, так как быстрее индикатор тестера работать не может. Например, если измерять тестером минусовой (управляющий) вход форсунки на работающем автомобиле, получится напряжение около 7...9 В, которое будет несколько изменяться в ту или другую сторону при нажатии и отпускании педали газа. Если же подключить к цепи осциллограф, то можно определить, что напряжение 7...9 В — это среднее значение напряжения на выводе форсунки за длительный период времени. Но при включении форсунки на исправном автомобиле напряжение на этом выводе равно + 0...1 В, а при выключении — напряжению питания -0...1 В. Таким образом, осциллограф отличается от тестера тем, что может воспроизводить на экране форму быстро меняющихся сигналов. Однако уловить автомобильным осциллографом электрический сигнал на входе приемника или сигнализации с радиоуправлением невозможно, так как частота сигнала на входе слишком высока для автомобильного осциллографа, и его можно увидеть только специальными осциллографами, имеющими максимальную частоту входного сигнала не менее 100 МГц. Предел частот для рассмотрения подавляющего большинства сигналов в автомобильной системе управления двигателем к настоящему времени составляет около 10 кГц, исключением из общей массы сигналов являются лишь сигналы зажигания — наиболее важная их составляющая находится в пределах 40 кГц. Поэтому осциллограф, предназначенный для работы в условиях автосервиса, должен достоверно показывать форму сигналов в полосе частот от 0 до 10 кГц, если он не предназначен для работы с системой зажигания, и от 0 до 40 кГц, если в перечень сигналов, доступных к просмотру, входят сигналы зажигания.
Необходимо корректировать искажения исследуемого сигнала в соответствии с полосой пропускания прибора. Все импульсные сигналы, существующие в системах электронного управления двигателем, как правило, претерпевают незначительные искажения в осциллографе с полосой пропускания не ниже 10 кГц. Форма сигнала может существенно отличаться только у сигналов зажигания и, в некоторых случаях, у сигналов датчиков положения коленчатого вала, и то на высоких оборотах (более 4000...5000 мин1).
У осциллографа, в отличие от тестера, существует набор горизонтальных разверток, синхронизация и горизонтальное смещение изображения. Горизонтальной разверткой 10 с называют отображение непрерывного фрагмента измеряемого сигнала длительностью 10 с. Фрагменты, отображаемые на экране, не следуют в реальности один за другим, без перерыва. Фрагменты измеряемого сигнала отстоят друг от друга на произвольное время, но показ изображения на экране всегда начинается с одной и той же точки изображения, поэтому изображение на экране кажется слитным и относительно неподвижным, что позволяет просматривать сигналы в реальном времени. Для того чтобы обеспечить вывод изображения таким образом, в осциллографе есть механизм или устройство, называемые синхронизацией. Этот механизм обеспечивает выдачу в осциллограф команд начала рисования фрагмента входного напряжения. Простейший способ, используемый во всех осциллографах широкого употребления — это фиксация момента, когда напряжение на входе переходит через какой-то уровень в определенную сторону (например, переход напряжения через уровень 6 В в сторону увеличения). Этот способ синхронизации называется синхронизацией по входному сигналу или внутренней синхронизацией. Уровень напряжения и направление перехода можно менять по своему усмотрению. Для того чтобы устройство могло мгновенно отреагировать на появление сигнала начала рисования существует механизм, который называется горизонтальным смещением сигнала — с его помощью в осциллографах можно увидеть сигнал, который появился на входе одновременно или даже раньше сигнала синхронизации, а также установить просматриваемый сигнал в удобное положение на экране.
Основными сервисными функциями являются функции записи сигнала для последующего просмотра и автоматическая установка вертикальной и горизонтальной разверток и способа синхронизации по заранее определенному типу входного сигнала.
Мультиметр — многофункциональное устройство (электронный измерительный прибор, объединяющий в себе несколько функций), позволяющее измерять не только напряжение и силу тока, но и определять емкость, индуктивность, температуру, частоту, а также длительность импульсов и скважность (интервалы между импульсами) в случае импульсного сигнала. В минимальном наборе мультиметр объединяет вольтметр, амперметр и омметр. Цифровые мультиметры имеют графический дисплей для отображения формы сигнала.
Мультиметр предназначен для измерения постоянного/переменного напряжения от 400 мВ до 1000 В; измерения постоянного/переменного тока от 40 мА до 10 А; измерения сопротивления до 100 МОм; измерения электрического сопротивления с сигнализацией низкого сопротивления цепи; проверки целостности полупроводниковых диодов и нахождения их прямого напряжения; измерения электрической емкости; измерения индуктивности; измерения температуры; измерения частоты гармонического сигнала.
15. Стробоскопы
Автомобильные стробоскопы предназначены для визуального контроля взаимного расположения установочных меток момента зажигания на блоке цилиндров и маховике или шкиве коленчатого вала при работе двигателя. Это особенно важно при тестировании двигателей, конструкция которых предполагает возможность регулировки начального момента зажигания.
От правильной установки момента зажигания зависят и расход топлива, и мощностные характеристики двигателя, и темпы его износа. Опытные водители выставляют зажигание «на глазок», точнее, на слух — ослабляют крепление трамблера, заводят мотор и вращают корпус прерывателя-распределителя, пока им не покажется, что поймали нужный момент. Иногда применяется способ с использованием контрольной лампы, но точно совместить метки на шкиве коленчатого вала и крышке привода газораспределительного механизма не так просто. Наибольшую точность при установке момента зажигания обеспечивает стробоскоп.
Работа стробоскопа основана на стробоскопическом эффекте. Суть его состоит в следующем: если осветить движущийся в темноте объект очень короткой яркой вспышкой, он зрительно будет казаться как бы неподвижно «застывшим» в том положении, в каком его застала вспышка. Освещая, например, вращающееся колесо вспышками, следующими с частотой, равной частоте его вращения, можно зрительно остановить колесо, что легко заметить по положению какой-либо метки на нем. Для установки момента зажигания запускают двигатель на холостые обороты и стробоскопом освещают специальные установочные метки. Одна из них — подвижная — размещена на коленчатом валу (либо на маховике, либо на шкиве привода генератора), а другая — на корпусе двигателя. Вспышки синхронизируют с моментами искрообразования в запальной свече первого цилиндра, для чего емкостный датчик стробоскопа крепят на ее высоковольтном проводе. В свете вспышек будут видны обе метки, причем, если они находятся точно одна напротив другой, угол опережения зажигания оптимален, если же подвижная метка смещена, корректируют положение прерывателя-распределителя до совпадения меток