Смекни!
smekni.com

Расчет рабочих процессов судового дизеля ВЯРТСИЛЯ "Vasa22" (стр. 2 из 3)

b. Действительное значение

L=L0a=0,496*1,9=0,942 кмоль/кг

c. Химический теоретический коэффициент молекулярного изменения в процессе сгорания

1+
1,033

d. Действительное значение

e. Средняя изохорная теплоемкость продуктов сгорания (кДж/(кмоль*К)) при:

Тс: (mСV)C =19.26+0.0025TC=19,26+0,0025*831=21,34

TZ: (mCV)Z =

=

=

19,89+0,00308 TZ

TZ (изобарная): (mCР)Z = (mCV)Z + 8,315 =28,205+0,00308 TZ

f. Степень повышения давления при сгорании

l = 1,5

g. Температура рабочего тела в точке z определяем из уравнения сгорания путем решения его методом последовательных приближений

Принимаем ТZ =1850 К

h. Степень предварительного расширения:

r=

1,64

6. Процесс расширения

a. Степень расширения

7,3

b. Давление в цилиндре в конце расширения

=
1,03 МПа

c. Температура газов в конце расширения

1170 К

7. Расчетный цикл

a. Среднее индикаторное давление цикла

=

2,044 МПа

b. Заданное среднее индикаторное давление

2,048 МПа

где Ре3 = Ре =1,77 МПа

jСК =0,97 - коэффициент скругления

c. Отклонение

2,2 %

Расчет политроп сжатия и расширения

e1=Va/V1 Vi = Va / e1 Pсж=Ра e1n1 Pрасш=РВ e1n2
а 1 0,00995 0,32 1,039
1 1,25 0,00796 0,43443 1,36715
2 1,5 0,00663 0,55769 1,71084
3 1,75 0,00568 0,68883 2,06802
4 2 0,00497 0,82711 2,43716
5 2,5 0,00398 1,12287 3,20688
6 3 0,00332 1,44147 4,01307
7 4 0,00249 2,13783 5,71677
8 5 0,00199 2,90228 7,52229
9 6 0,00166 3,72578 9,41333
z 7,31 0,00136 4,88334 12,0015
11 8 0,00124 5,52565
12 10 0,00099 7,50153
c 12 0,00083 9,63004

8. Индикаторные и эффективные показатели дизеля

a. Среднее индикаторное давление

Pi =Pi’ jCK=2,044*0.97=1,96 МПа

b. Индикаторная работа газов

Li=PiVh103=1,96*0,0091*1000=72,65 кДж

c. Индикаторная мощность

Ni=

894,6 кВт

d. Среднее эффективное давление

Pe=PihM=1,96*0,9=1,76 МПа

e. Эффективная мощность

Ne=NihM=894,6*0,9=805 кВт

f. Цикловая подача топлива

gц=

0,0011 кг/цикл

g. Часовой расход топлива

213 кг/час

h. Удельный индикаторный расход

0,238 кг/(кВт*ч)

i. Индикаторный КПД

0,353

j. Эффективный КПД

hе= hihм=0,353*0,9=0,318

k. Удельный эффективный расход топлива

0,221кг/(кВт*ч)

l. Отклонение

2,79%

где geз=0,215 кг/(кВт*ч)

9. Расчет процесса газообмена

yвп=

, где

GS=GBja=1.852*1.5=2.8 кг – расход воздуха на цилиндр за цикл

R=287 Дж/(кг*к) – газовая постоянная

А3эф=А3mвп=248*0,8=198,4 м2*с – эффективное время сечение продувки

yвп=

=0,19

(Рц/РS)расч=0,98

Рц=РS(Рц/РS)=0,216*0,98=0,212 МПа

DРвп= Рs-Рц=0,216-0,212=0,04 МПа

1. Определение потери давления DРвып в выпускных органах и давления в выпускном трубопроводе Рг в процессе принудительного выпуска.

yвып=

, где

GВ(jа + gнп - gг –1)=1,852(1,5+0,6-0,05-1)=1,94 кг – количество газов и воздуха проходящих через выпускные органы за стадию принудительного выпуска

gнп=0,6 – коэффициент остаточных газов к моменту начала продувки

А2эф=А2mвып=131,2*0,8=104,96 м2с – эффективное время сечение принудительного выпуска.

Рц=0,212 МПа – среднее давление в цилиндре за период продувки принудительного выпуска

Тц – средняя температура газов в цилиндре за период принудительного выпуска.

Тц=(Тнп-Та) / [ln(Тнп/Та)]

Тнп – температура газов в цилиндре к началу продувки

Тнп = ТВ’(Рнп/Рв’)(m-1)/m

Рнп – давление газов в цилиндре к началу продувки

Рнп = Рd=РS=0.216 МПа

Тнп=921(0,216/0,79)(1,3-1)/1,3 =683 К

Тц=(683,5-336)/[ln(683,5/336)]=489 К

yвып=

(Рг/Рц)расч=0,92

Рг=Рц(Рс/Рц)расч=0,212*0,92=0,195 МПа

DРвып=Рц-Рг=0,212-0,195=0,021МПа – общий перепад давления на продувку цилиндра.

2. Проверка соблюдения условия Рd=PS (достаточности время-сечение предварения выпуска)

Рd=

, где

Vц = (VB’+Vd)/2=(0.86+1.19)/2=1.02 м3 – средний объем цилиндра за период предварения выпуска.

А1mСВ=58*0,7=40,6 м2с – эффективное время-сечение предварения выпуска.

mСВ=0,7 – коэффициент расхода выпускных органов в период свободного выпуска.

РГ=0,195 МПа – среднее давление в выхлопном коллекторе за период предварения выпуска.

Рd=

МПа

10. Расчет систем наддува

1. Оценка потерь давления в газовоздушных трактах системы.

xобщ =xфxвоxрxотxn

xa=0.97 – в фильтрах турбокомпрессорах

xво= 0,97 – в воздухоохладителе

xг=0,96 – в выпускном трубопроводе до турбины

xот= 0,97 – в выпускном трубопроводе после турбины

xn=Рг/Рs=1,0 – при продувке цилиндра

xобщ=0,99*0,98*0,98*0,97*1,0=0,876

2. Температура газов перед турбиной

Тт=Тs+

qГ =0,4 – относительная потеря тепла с газами

СРГ =1,09 – средняя теплоемкость газов (кДж/кг)

Тт=303+

=683 К

3. Выбор КПД турбокомпрессора

hТК=0,60-0,67

4. Степени повышения давления воздуха pк в компрессоре и понижения давления газов pт в турбине

pк =Рк/Р0=РS/(xвоРбxф)=0,339/(0,97*0,97*0,1013)=3,56

Рб=0,1013 - барометрическое давление [МПа]

pт = Рт/Рот=xобщpк=0,876*3,56=3,12

5. Определяем относительные перепады температур воздуха

В компрессоре:

Dtк=pк(к-1)/к-1=3,56(1,35-1)/1,35-1=0,3904

В турбине:

DtТ=1-

6. Балансный параметр hТК и оценка достаточной мощности турбины

hТК РАСЧ =

Т0 = 300 К – температура воздуха на входе в компрессор.

hТК РАСЧ =

0,656

корректировка показателей ТТ , xобщ не требуется

7. Адиабатные работы сжатия воздуха в компрессоре НК и расширения газов в турбине НТ

НК= 1005Т0Dtк=1005*303*0,3904=118883 Дж/кг

НТ=1128ТТDtТ=1128*327*0,255=180932 Дж/кг

8. Температура воздуха за компрессором

ТК=Т0+

hад.к.=0,83 –адиабатный КПД компрессора

ср.в. =1050 кДж/(кг*К) – средняя теплоемкость воздуха

ТК=303+

=439 К

9. Температура воздуха за турбиной

Т0Т=ТТ -

hад.т.=hТ/hТМ =0,82/0,94=0,872 – адиабатный КПД турбины

hТ=0,82 – КПД турбины

hТМ=0,94 – механический КПД турбокомпрессора

сРГ – среднея теплоемкость газов [кДж/(кг*К)]

Т0Т=627 -

= 482 К