Смекни!
smekni.com

Расчет процессов в двигателе ВАЗ-2103 (стр. 1 из 8)

Министерство образования и науки Республики Казахстан

Восточно-Казахстанский Государственный Технический

университет им. Д. Серикбаева

Кафедра «Транспорт и логистика»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по дисциплине

«Проектирование энергитических установок»

Выполнил:

студент группы 08-ААк-1

Сейткамзин Т.Е.

Принял:

преподаватель Азаматов Б.Н.

Усть-Каменогорск, 2010


Содержание

Исходные данные к расчету

1. Выбор исходных данных к тепловому расчету

1.1 Параметры окружающей среды

1.2 Элементарный состав, физико-химическая и техническая характеристика топлива

1.3 Подогрев заряда в процессе впуска

1.4 Параметры процесса выпуска и остаточных газов

1.5 Суммарный коэффициент сопротивления выпускной системы

1.6 Показатель политропы сжатия

1.7 Показатель политропы расширения

1.8 Коэффициент использования теплоты

1.9 Коэффициент степени повышения давления

1.10 Коэффициент скругления индикаторной диаграммы

1.11 Степень сжатия двигателя

2. Тепловой расчет параметров и оценочных показателей рабочего цикла двигателя

2.1 Расчет процесса газообмена

2.2 Расчет процесса сжатия

2.3 Определение состава, количества и физико-химических характеристик рабочей смеси и продуктов сгорания

2.4 Процесс сгорания

2.5 Процесс расширения

2.6 Определение показателей рабочего цикла двигателя

2.6.1 Определение индикаторных показателей

2.6.2 Определение механических потерь при совершении рабочего цикла

2.6.3 Эффективные показатели двигателя

2.7 Определение геометрических размеров цилиндра и кривошипно-шатунной группы двигателя

2.8 Построение индикаторной диаграммы

2.9 Построение внешней скоростной характеристики

3. Кинематика и динамика КШМ

3.1 Общие положения и исходные параметры к расчету кинематики и динамических сил кривошипно-шатунного механизма двигателя

3.2 Расчет кинематических параметров кривошипно-шатунного механизма

3.3 Расчет динамических сил

3.4 Определение суммарного крутящего момента на коленчатом валу

двигателя.

3.5 Построение полярной диаграммы нагрузки на шатунную шейку

3.6 Построение диаграммы износа шатунной шейки

Список используемой литературы


Исходные данные к расчету

Таблица 1. Исходные данные

Наименование параметров. Обозна- Ед. изм Численное
чения значение
1 2 3 4
1.Давление окружающей среды P0 МПа 0,103
2.Температура окружающей среды T0 K 297
3.Содержание углерода в топливе С - 0,848
4.Содержание водорода в топливе Н - 0,152
5.Содержение кислорода в топливе От - 0
6.Теплотворная способность бензина HU кДж/кг 43930
7.Молекулярная масса топлива μт кг/кмоль 100
8.Коэффициент отношения водорода К
и окиси углерода в продуктах сгорания 0,5
9.Универсальная газовая постоянная mR кДж/кмольК 8,314
10.Газовая постоянная воздуха RВ Дж/кг К 287
11.Степень подогрева заряда ΔT К 15
12.Давление газов на выпуске Рг МПа 0,120
13.Температура газов на выпуске Тг К 1000
14.Суммарный коэффициент соп- 2+ζ) -
ротивления впускной системы 2,65
15.Показатель политропы сжатия n1 - 1,35
16.Покозатель политропы расширения n2 - 1,27
17.Коэффициент использования xz -
теплоты 0,87
18.Степень повышения давления Λ - -
19.Коэффициент скругления φд -
индикаторной диаграммы 0,95
20.Ход поршня прототипа Snn м 80
21.Отношение радиуса кривошипа к λ -
длине шатуна 0,28
22.Степень сжатия ε - 8,5
23.Коэффициент избытка воздуха α - 0,99
24.Отношение хода поршня к S/D -
диаметру цилиндра 1
25.Эффективная мощность двигателя Ne КВт 56
26.Номинальная частота вращения n мин-1 5600
27.Число цилиндров i - 4

1. Выбор исходных данных к тепловому расчету

1.1 Параметры окружающей среды

Давление и температура окружающей среды принимаем исходя из принятых нормальных физических условий и с учетом их отклонений в реальных условиях.

Р0= 0,103 МПа; Т0= 295 К.

1.2 Элементарный состав, физико-химическая и техническая

характеристика топлива

Жидкие моторные топлива, используемые для автомобильных двигателей внутреннего сгорания, представляют собой совокупность целого ряда углеводородных соединений. Его элементарный состав по массе можно представить как:

C+H+OT=1кг

где: С — содержание углерода; кг/кг топлива;

Н — содержание водорода; кг/кг топлива;

От — содержание кислорода в соединениях топлива; кг/кг топлива;

Для карбюраторных двигателей, где в качестве топлива используется бензин, с составным содержанием: С=0,848, Н=0,152, От= О.

Для расчета согласно варианта принимаем:

содержание углерода С=0,848 кг/кг топлива;

содержание водорода H=0,152;

содержание кислорода 0т=0,0 кг/кг топлива.

Низшая теплотворная способность топлива для бензина оставляет - Hu=43,93*103 кДж/кг.

Молекулярная масса топлива используемого для автомобильных карбюраторных двигателей mт=190 кг/кмоль.

1.3 Подогрев заряда в процессе впуска

Свежий заряд при движении во впускной системе и цилиндре соприкасается с горячими стенками. В результате происходит некоторое повышение температуры смеси. Аналитическое определение DТ осложняется отсутствием данных для определения коэффициента теплоотдачи и средней температуры поверхностей. В связи с этим при тепловом расчете его значение подбирают на основе ранее полученных экспериментальных результатов, с учетом физики происходящих явлений. В карбюраторных двигателях часть тепловой энергии заряда расходуется на испарение мелкораспыленного топлива. В конечном итоге степень подогрева заряда в процессе впуска оценивается значением DТ в пределах 0...20.

Принимаем DТ=15.

1.4 Параметры процесса выпуска и остаточных газов

Качество протекания процесса наполнения цилиндра во многом определяется параметрами выпуска отработавших газов: давлением на выпуске - Pr и температура отработавших газов - Tr. Величина Pr определяется давлением среды — Po. В двигателях без надува Pк = Po. Температура отработавших газов Тr зависит от состава смеси, степени расширения и теплообмена при расширении и выпуске. При расчете коэффициентов остаточных газов и наполнения принимаем давление - Рr=(1,12-1,16)Ро. Температура остаточных газов для бензиновых двигателей в зависимости от ранее приведенных условий изменяется в пределах Tr=950....1050, К.

Значения Pr и Tr принимаем 0,120 Мпа и 1000оС соответственно.

1.5 Суммарный коэффициент сопротивления впускной системы

Совершенство организации, процесса впуска и соответственно параметры конца впуска во многом определяется оригинальностью конструкции самой системы впуска и характеризуется ее суммарным коэффициентом сопротивления - (β²+ζ). Здесь p=Wц/Wвп определяет гашение скорости движения смеси при поступлении в цилиндр, z - коэффициент гидравлического сопротивления системы впуска, отнесенный к наиболее узкому ее сечению. Принимаем (β²+ζ)=2,65.

1.6 Показатель политропы сжатия

Значение параметров процесса сжатия определяется термодинамическими параметрами рабочей смеси в начале сжатия, степени сжатия и характера теплообмена, интенсивность и направление которого и должен отражать показатель политропы сжатия. В начале процесса сжатия температура смеси ниже температуры поверхностей стенок и температура смеси повышается как за счет сжатия, так и в результате подвода теплоты от стенок поэтому n1>к. Затем температуры стенок и рабочей смеси постепенно выравниваются (n1=к), а при дальнейшем сжатии температура смеси больше температуры стенок, происходит теплоотдача в стенки цилиндров и камеры сгорания (n1<к). Здесь к - показатель адиабаты, к=1,35.

Таким образом, значение n1 в процессе сжатия является переменным, зависит от характера теплообмена с учетом принятой системы охлаждения, частоты вращения, следовательно, времени в течении которого происходит теплообмен, конструктивных особенностей двигателя и теплопроводности материала поршня, головки цилиндров и гильзы, в расчете принимаем его среднее значение с учетом всех выше перечисленных факторов.

1.7 Показатель политропы расширения

Значение термодинамических параметров рабочего тела в процессе расширения также определяется на основе аналитических зависимостей политропного процесса с постоянным показателем n2. Его значение, также как и значение показателя политропы сжатия, определяется характером протекания теплообмена в процессе расширения. Предварительное его значение принимаем на основе собственных соображений в пределах n2=1,23...1,28.

Принимаем n2=1,27.

1.8 Коэффициент использования теплоты

В конечном итоге учитывает совершенство организации процесса сгорания и эффективность использования теплоты с учетом типа двигателя, его быстроходности, условиями охлаждения и конструктивными особенностями камеры сгорания. Его конкретные значения близко отражают долю теплоты, которая активно расходуется на повышение температуры рабочего тела и совершение работы. На основе опытных данных его значение при работе двигателя с полной нагрузкой изменяются в пределах: