Смекни!
smekni.com

Електропоїзди постійного струму (стр. 11 из 14)

Форма природної механічної характеристики двигуна з послідовним збудженням дозволяє при зниженні навантаження підвищувати мінімальну швидкість в 1,5 – 2 рази, забезпечуючи підвищення продуктивності при заданій потужності двигуна. При цьому важливою перевагою двигуна є підвищена перенавантажувальна спроможність.

В зв’язку з нелінійністю кривої намагнічування розрахувати природні характеристики двигуна з послідовним збудженням тільки за його номінальними даними неможливо, тому при проектуванні слід користуватися природними характеристиками

і
, що наведені в каталогах.

Рисунок 7.3 – Механічні (а) та електромеханічні (б) статичні характеристики двигуна з послідовним збудженням

Статична жорсткість механічної характеристики двигуна послідовного збудження залежить від навантаження. При малому навантаженні двигун має м’яку характеристику, з зростанням навантаження модуль жорсткості зростає і при

прямує до сталого значення, яке визначається (7.7):

(7.7)

Відповідно введення додаткового опору зменшує жорсткість механічних характеристик. Реостатні механічні та електромеханічні характеристики показані на рис. 7.3, а, б разом з природними характеристиками, відповідаючими

, на якому бачимо, що введення додаткового опору в коло якоря дозволяє обмежити момент та струм короткого замикання двигуна.

7.2 Динамічні властивості двигуна з послідовним збудженням

Математичний опис динамічного процесу перетворення енергії в двигуні з послідовним збудженням (з урахуванням умовної обмотки вихрових струмів) можно записати у слідуючому вигляді:

(7.8)

.

Цей математичний опис процесів електромеханічного перетворення енергії в двигуні з послідовним збудженням містить добутки змінних, тому використовувати його для аналіза динамічних властивостей перетворювача можливо тільки за допомогою ЕОМ. Але загальні закономірності, основні динамічні властивості електромеханічного перетворювача з послідовним збудженням можуть бути виявлені аналітичним шляхом, якщо виконати лінеаризацію рівнянь механічної характеристики (7.8) поблизу точки статичної рівноваги. В зв’язку з тим що лінеаризація здійснюється поблизу точки статичної рівноваги, криву намагнічування слід апроксимізовувати торканою в точці

,
, як показано на рис. 7.4, при цьому
і перші два рівняння системи (7.8) можуть бути приведені до виду

;

и
– сталі часу відповідно еквівалентного контура вихрових струмів (див. рис. 7.1, б) та обмотки збудження. Віднявши почленно з першого рівняння друге, отримаємо більш зручний для розв’язання вид системи (7.8):

(7.9)

Рисунок 7.4 – Лінеаризація кривої намагнічування


Лінеарізуємо систему (7.9) шляхом розкладання в ряд Тейлора поблизу точки статичної рівноваги, позначивши

, отримаємо

(7.10)

Розв’язавши систему (7.10) відносно

та
, отримаємо лінеаризовані рівняння електромеханічної та механічної характеристик двигуна у вигляді

; (7.11)

. (7.12)

Рівняння (7.11) та (7.12) характеризують основні динамічні особливості перетворювача з послідовним збудженням при умові обмеження відхилення змінних від точки статичної рівноваги вузькими межами.

Структурна схема лініарезованого електромеханічного перетворювача з послідовним збудженням, відповідаюча (7.12), представлена на рис. 7.5.

Рисунок 7.5 – Структурна схема лінеаризованої ЕМП з послідовним збудженням


За допомогою цієї схеми визначимо передаточну функцію динамічної жорсткості механічної характеристики:

. (7.13)

Рівняння (7.13) свідчить про те, що динамічна жорсткість в даному випадку значно залежить від положення точки статичної рівноваги на механічній характеристиці двигуна.

Лінеаризовані характеристики двигуна з послідовним збудженням (7.11) та (7.12) можуть бути використані для аналіза усталених коливальних режимів електромеханічних систем з двигуном послідовного збудження, а також для перевірки стійкості та якості замкнених систем регулювання з таким двигуном при обмежених відхиленнях від точки статичної рівноваги.

На рис. 6.6 представлена структурна схема електромеханічної системи з двигуном послідовного збудження, яка може бути використана при моделюванні її на ЕОМ. При розгляданні динамічних режимів, в яких відхилення змінних від точки статичної рівноваги не виходять за межі допустимої лінеаризації нелінійної механічної характеристки двигуна, слід користуватися лінеаризованим рівнянням динамічної механічної характеристки (7.12).

(7.14)

Рисунок 7.6 – Електромеханічна система електропривода постійного струму з двигуном послідовного збудження (а) та її структурна схема (б)

7.3 Визначення параметрів об’єкту регулювання – двигуна послідовного збудження

Вихідні дані

Двигун УРТ-110Б

Номінальна потужність

, кВт...................................................200

Номінальна напруга

, В...................................................................1500

Номінальний струм якоря

,А....................................................146

Номінальна швидкість обертання

, об/хв.............................1145

Номінальний момент

, Н∙м........................................................1670

Номінальний струм збудження

, А............................................115

Кількість пар полюсів 2р.........................................................................4

Кількість витків обмотки збудження на полюс

..............................78

Опір якоря

, Ом................................................................................0,223

Опір обмотки збудження

, Ом........................................................0,248

Опір обмоток додаткових полюсів

, Ом................................0,095

Падіння напруги під щітками

, В...............................................2

Момент інерції привода

, кг∙
................................................140,3

Опір якірного кола, Ом:

(7.15)

Індуктивність якірного кола, Гн:

(7.16)