Отсюда
(7.3)Частота ЭДС, которая индуцируется вращающимся магнитным полем статора в обмотке ротора, зависит от скольжения и определяется по формуле
, (7.4)где f1 – частота напряжения питающей сети
2.2 Принцип действия синхронного генератора
Постоянный магнитный поток, создаваемый током в обмотке возбуждения ротора, замыкается через сердечник ротора, воздушный зазор и сердечник статора. При вращении ротора каким-либо приводом с некоторой частотой n с этой же частотой будет вращаться и магнитное поле ротора. Пересекая проводники трехфазной статорной обмотки, это поле индуцирует в ней трехфазную ЭДС, изменяющуюся с частотой:
, (7.7)где р – число пар полюсов ротора
При подключении к обмотке статора трехфазной нагрузки проходящий по обмотке статора ток создает вращающееся магнитное поле статора, частота вращения которого определяется по формуле (7.1). Число пар полюсов ротора и число пар полюсов статорной обмотки одинаково, поэтому из сравнения формул (7.1) и (7.7) видно, что n0 = n, т.е. частота вращения поля статора равна частоте вращения ротора. Поэтому машина называется синхронной.
2.3 Трансформаторы
Назначение и устройство. Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение – понижающих.
Принцип действия. Принцип действия трансформатора, основанный на явлении взаимоиндукции, рассмотрим на примере однофазного двухобмоточного трансформатора (рис. 6.3). Если на первичную обмотку с числом витков W1 подать переменное напряжение u1, то протекающий по обмотке переменный ток i1 создаст в магнитопроводе переменный магнитный поток Ф, пронизывающий обе обмотки трансформатора и индуцирующий в них переменные ЭДС е1 и е2. Если ко вторичной обмотке подключить нагрузку, то под действием ЭДС е2 в цепи вторичной обмотки будет протекать переменный ток i2. Отношение ЭДС, равное отношению числу витков первичной и вторичной обмоток называется коэффициентом трансформации трансформатора:
(6.1)Пренебрегая незначительными падениями напряжения в обмотках, отношение ЭДС можно заменить отношением напряжений:
(6.2)Следовательно, у повышающих трансформаторов k<1, а у понижающих трансформаторов k>1.
Преобразование энергии в трансформаторах происходит с незначительными потерями, и подводимая к трансформатору полная мощность
приблизительно равна отдаваемой полной мощности . Откуда , т.е. (6.3)Следовательно, по обмотке ВН протекает ток примерно в k раз меньший, чем по обмотке НН.
Учитывая это, обмотку ВН, имеющую большее число витков, выполняют проводом меньшего сечения, чем обмотку НН
3. Создание силы тяги локомотива
В локомотивах образование движущей силы (силы тяги) происходит вследствие взаимодействия колесных пар с рельсами за счет вращающего момента, создаваемого тяговым двигателем (рис.3.1). К колесной паре 1 приложен вращающий момент Мк, который передается от двигателя 2 через зубчатый редуктор, состоящий из шестерни 3 и зубчатого колеса 4. Шестерня 3 закреплена на валу ТЭД, а зубчатое колесо 4 - на оси колесной пары.
Вращающий момент на колесной паре равен
Мк=Мд.μ.ηз, Н.м, (3.1)
где Мд - момент на валу двигателя, Н.м;
μ - передаточное число зубчатой передачи;
ηз - коэффициент полезного действия зубчатой передачи.
Момент Мк обычно представляют в виде пары сил F1 и F2 с плечом Dк/2, одна из которых (F1) приложена к ободу колеса в точке касания с рельсом (точка А), а другая (F2) - к оси колесной пары. Поскольку силы F1 и F2, действующие на колесную пару, равны по величине и противоположно направлены, то они уравновешивают друг друга и не вызывают поступательного движения колес.
Очевидно, что поступательное движение колесной пары будет возможно в том случае, если скомпенсировать действие силы F1 какой-либо дополнительной силой и нарушить тем самым баланс сил F1 и F2. Подобная ситуация возникает, когда колесная пара (далее для сокращения - колесо) контактирует с рельсом и прижата к нему силой тяжести Gт.
Рис.3.1. Образование силы тяги. 1 - колесная пара; 2 - тяговый электродвигатель; 3 - шестерня; 4 - большое зубчатое колесо
Сила тяжести Gт, приходящаяся на одну ось локомотива, приложена к колесу и через точку контакта А действует на рельс (рис.6.1). Реакция рельса на колесо Gр по III закону Ньютона равна значению силы тяжести Gт по модулю и противоположна ей по направлению. Указанные силы, действующие на колесо в вертикальной плоскости, уравновешивают друг друга.
В горизонтальной плоскости к ободу колеса приложена сила F1, которая, как и сила тяжести Gт, через точку контакта А действует на рельс (сила F1 направлена вдоль поверхности рельсов, поэтому в случае их ненадежного крепления имеет место явление, известное как "угон пути"). Реакция рельса Fр по III закону Ньютона равна силе F1 по модулю и противоположна ей по направлению. Поэтому силы F1 и Fр, действующие на колесо в точке А, уравновешивают друг друга. Сила F2 остается неуравновешенной, что вызывает качение колеса и его поступательное движение относительно рельса.
Следовательно, движущей силой (силой тяги) колесной пары является сила F2, развиваемая тяговым двигателем. Для удобства расчета ее значений, на практике в качестве силы тяги условились считать силу реакции рельса Fр, равную по величине силам F1 и F2 [11]. При этом значения сил определяют, рассматривая равенство моментов
Fр.Dк/2=Mк,
из которого следует, что F2 = Fр = 2. Мк/Dк = 2. Мд.μ.ηз/Dк, Н.
Отметим, что данное уравнение было использовано при построении электротяговых характеристик локомотивов для расчета силы тяги ТЭД на ободе колеса Fкд
Поскольку сила Fр действует по касательной к колесу, ее называют касательной силой тяги. Для локомотива в целом касательную силу тяги Fк можно определить как
Fк = nос.Fр = m.Fкд, Н, (3.2)
где nос - число движущих осей локомотива;
m - количество тяговых электродвигателей на локомотиве.
Таким образом, качение колесной пары по рельсу происходит, если к ней приложена пара сил F1 и F2 (вращающий момент от тягового двигателя) и сила F1 уравновешена реакцией рельса Fр. Сформулируем особенности силы Fр как касательной силы тяги:
сила Fр, будучи силой реакции, возникает только под действием силы F1, равна ей по модулю и поэтому пропорциональна величине вращающего момента ТЭД Мд;
реакция Fр, будучи по природе силой трения, возникает при наличии контакта колеса с рельсом и силы, прижимающей их друг к другу (силы тяжести); уровень силы Fр не может превосходить некоторой максимальной величины, которую называют силой сцепления колес с рельсами Fсц.
Итак, касательная сила тяги - это сила реакции рельса на колесо, возникающая под действием внешнего вращающего момента и ограниченная силой сцепления колеса с рельсом.
При увеличении вращающего момента на колесе Мк касательная сила тяги Fр, равная силе тяги ТЭД Fкд, возрастает вплоть до уровня, соответствующего силе сцепления Fсц (зона I на рис.3.2). Дальнейшее повышение момента Мк (зона II) приводит к нарушению условия качения колеса F1=Fр. Сила F1, равная Fкд, не уравновешивается силой Fр, равной Fсц. В результате происходит срыв сцепления и начинается боксование, то есть проскальзывание колеса относительно поверхности рельса, при котором частота вращения якоря ТЭД nд резко увеличивается.
Зависимость касательной силы тяги Fр от силы тяги ТЭД Fкд и силы сцепления колеса с рельсом Fсц
Рис.3.2. | |
- касательная сила тяги Fр; - сила тяги, развиваемая ТЭД, Fкд=F1 ; - сила сцепления колеса с рельсом Fсц |
Боксование приводит к интенсивному износу рабочих поверхностей колеса и рельса, разрушению вращающихся деталей якоря ТЭД под действием центробежных сил, возникновению кругового огня на коллекторе ТЭД и другим опасным явлениям. Чтобы не допускать их, установлены технические условия устойчивого движения локомотива, которые описываются неравенством [11]