Смекни!
smekni.com

Организация и планирование ремонтов пути и текущего содержания (стр. 7 из 10)

Для фактического определения приведенной длины определяется множество факторов в том числе эксплуатационная работа - это состояние пути в плане, профиле и другие показатели.

В курсовом проекте приведенная длина определяется в соответствии с исходными данными, без учета инженерных и искусственных сооружений. По исходным данным приведенная длина составит:

Lприв.км = а1*Lгл + а2*Lгл + аст*Lст + ас.п*Nс.п.

Для двухпутного участка:

Lприв.км= 169*1,2+ 169*0,75= 329,6 км

Для однопутного участка:

Lприв.км =1,2*64= 76,8 км;

Для стрелочных переводов:

Lприв.км= 126*1/10= 12,6 км;

Lприв.км= 38*1/15=2,53 км;

Т.о. получаем: Lприв.км= 329,6+76,8+12,6+2,53=421,53 км;

Выбираем организационно-структурную форму машинизированной дистанции пути 2м.

Для выполнения НР

Текущее содержание по своей сущности противостоит процессу непрерывного накопления остаточных деформаций в пути. Поэтому структура ПЧ должна обеспечивать состояние пути на заданном техническом уровне соответствующими рациональными и эффективными формами организации работ своих производственных подразделений.

На формирование организационной структуры ПЧ и ее подразделений влияют наличный парк путевых машин, механизмов, транспортных средств, численность рабочей силы, определяемая развернутой длиной путей и их конструкцией, числом стрелочных переводов, протяженностью искусственных сооружений, параметрами эксплуатационных условий и т.д. Наибольшая протяженность ПЧ определяется возможностью оперативного управления ее производственными подразделениями и необходимостью выполнения своевременного натурного осмотра пути, ее обустройств и сооружений.

В зависимости от оснащенности путевыми машинами, для выполнения комплексных планово-предупредительных работ текущее содержание осуществляется механизированными и машинизированными дистанциями пути.

Одна из основных задач путевого хозяйства - обеспечить перевод его практически полностью на машинизированный способ текущего содержания, при котором выполнение наиболее трудоемких работ производится машинными технологическими комплексами.

Границы ПЧ и ее подразделений (участков, околотков, рабочих отделений) устанавливаются на основе расчетов приведенной длины пути (прив.км).

Рекомендуемая приведенная длина современных ПЧ с учетом их укрупнения указана в табл.

Приведенная длина дистанции пути и ее подразделений, привед.км

Участки
Подразделение Однопутные Двухпутные
Дистанция пути (ПЧ) 200…300 300…400
Околоток (ПД) 21…25 24…31
Рабочее отделение (ПДБ) 7…8 8…10
Участок (ПЧУ) состоит из 3-4 околотков

Указанные рекомендации учитываются при обосновании организационной структурной формы ПЧ в увязке с результатами расчетов производственного контингента различных бригад, необходимого для выполнения всего планируемого объема работ текущего содержания.

Для механизированных ПЧ рекомендовано 5 основных структурных форм, из них три для перегонных участков с малыми станциями и две - для крупных станций и околотков.

Характерным для каждой из них является деление механизированной ПЧ на околотки, которые, в свою очередь, могут делиться или не делиться на рабочие отделения.

Каждая организационно-структурная форма имеет свою рациональную сферу применения. Форма 2м - участковая с околотками и рабочими отделениями. Планово-предупредительные работы выполняет укрупненная бригада, а неотложные на каждом рабочем отделении - бригада из 5-7 чел. Во главе с освобожденным бригадиром.

1.6. Расчет численности монтеров пути на дистанции

Расчет возможной численности монтеров пути, а точнее расчетный контингент как в целом для дистанции, так и для конкретного ее подразделения определяется по дифференцированным формам затрат труда на текущее содержание пути и искусственных сооружений на основе приказа МПС №8 от 3 апреля 1997г.

Расчет численности монтеров пути для механизированных дистанций ведется по формулам:

а) для главных путей

Ргл= Lгл-1*Nгл1 + Lгл-2*Nгл2+ Lго п*Nгл п,

где Ргл - численность монтеров пути, чел.; 133128

N - норма расхода рабочей силы.

Ргл = 169*0,786+169*0,753+64*0,470= 292 чел.

б) для стрелочных переводов

Рсп= Псп-1*Nсп1 + Псп-j*Nспj,

где Псп-1, Псп - j - число стрелочных переводов по каждому типу и марке;

Nсп - нормы расхода рабочей силы.

Рсп = 63*0,153+63*0,17+38*0,34=33 чел.

Схема условной железной дороги

2. Ресурсосбережение

Одной из главных проблем путейцев является выход дорогостоящих рельсов. Их дефекты известны, квалифицированны. Задача заключается в технологическом обеспечении условий, предотвращающих образование дефектов.

Известно, что прочность и твердость рельсовых сталей взаимосвязана. Однако показатель твердости однозначно не характеризует прочность и обеспечение высокой надежности. Высокая твердость материала при определенных условиях может быть причиной повышенной хрупкости и излома при динамических нагрузках. Только сочетание высокой твердости и необходимой вязкости материала позволяет получать высокопрочные изделия.

Специфической особенностью изготовления рельсовых плетей из объемнозакаленных сталей оказывающей существенное влияние на возникновение остаточных напряжений и локальное разупрочнение сталей, является повторный нагрев торцов под сварку.

Электроконтактной сварке оплавлением присуще следующие недостатки:

Снижение твердости в зоне шва;

Образование крупнозернистой структуры;

Образование грата;

Недостаточная прочность и пластичность сварных стыков.

Для достижения более высоких эксплуатационных свойств предложен комбинированный способ сварки давлением с последующим объемным легированием сварного стыка методом сверхглубокого проникновения частиц, полученных методом самораспространяющегося высокотемпературного синтеза.

Комбинированный способ обеспечивает:

Формирование мелкодисперсной структуры;

Повышение твердости, прочности, износостойкости сварного шва;

Предотвращение образования грата и снижение затрат на его удаление.

Особенности сварки современных рельсов.

С увеличением количества плетей из новых и старогодных рельсов, внедрением рельсов из кислородно-конверторной стали и стали, выплавленной в электропечах, стал острее вопрос о качестве сварных стыков. В настоящее время на сети дорог действует 20 рельсосварочных предприятий, изготавливающих в год около 5000 км плетей из новых объемнозакаленных рельсов. При этом сваривают около 500 тыс. стыков по технологии, включающей контактную сварку, механическую и термическую обработку, дефектоскопирование. Каждая из операций ответственная, и несоблюдение или нарушение технологии может привести к браку в стыках.

Статистические данные об остродефектных рельсах, обнаруженных средствами дефектоскопии в пути, показывают, что в зоне сварных стыков становится больше дефектов 26.3 (в головке), 56.3 (в шейке) и 66.3 (в подошве).

Причины их образования следующие:

несоблюдение технологии контактной сварки - неметаллические включения, непровары, рыхлости, кратерные усадки;

несоблюдение технологии абразивной обработки - местные неровности на поверхности металла (врезание в тело, концентраторы напряжений в виде острых кромок), поджоги поверхностного слоя металла;

несоблюдение технологии термической обработки - образование мартенсита в поверхностном слое металла головки;

отсутствие термической обработки - смятие и повышенный износ головки, развитие усталостной трещины в области поджога поверхностного слоя металла сварного стыка.

На рис.1 показаны некоторые из перечисленных дефектов. Все упомянутые дефекты можно разделить на появившиеся в результате нарушения технологии сварки и на образовавшиеся в результате нарушения; технологии послесварочных операций.

При электроконтактной сварке оплавлением в ряде случаев в стыке возникают дефекты из-за неполного выравнивания кратеров на концах изделия. Газ и окисленный жидкий металл, находящиеся в кратерах, при кристаллизации образуют такие дефекты как газовый пузырь, рыхлость, кратерная усадка.

Неполное выдавливание из стыка жидкого металла при осадке приводит к появле- шию скоплений неметаллических включений, ориентированных по оси стыка.

В отличие от других способов сварки давлением при нагреве непрерывным оплавлением соприкасающиеся поверхности свариваемых деталей (рельсов) всегда неровные из-за взрывообразного разрушения контактов, большая часть которых покрыта жидким слоем металла (расплава).

На поверхности торца слой металла неоднороден по толщине. Толщина расплава на торцах рельсов зависит от особенностей разрушения элементарных контактов и может изменяться от нуля в местах, где наблюдается срыв жидкого слоя при взрыве контакта, до миллиметра на участках, где металл скапливается в углублениях на поверхности оплавления.

Все участки этой поверхности имеют высокую температуру, близкую к температуре плавления металла, и могут интенсивно окисляться, так как при сварке рельсов оплавлением воздух проникает к соприкасающимся поверхностям, а зазор между ними (искровой зазор) на отдельных участках может достигать нескольких миллиметров.