Учитывая, что при взаимодействии кислорода воздуха с жидким металлом окисление протекает более интенсивно, чем при взаимодействии с твердым металлом, можно ожидать низкокачественной сварки.
По лини шва при сварке углеродистых низколегированных рельсовых сталей непрерывным оплавлением многие дефекты представляют собой оксиды металла и других легирующих элементов.
Рис.1. Основные дефекты в сварных стыках: а - рыхлость; б - кратерная усадка; в - следы термомеханического воздействия абразивного круга при шлифовке; г - выкрашивание поверхности катания головки сварного стыка в области образования неблагоприятных закалочных структур при нарушении технологии упрочнения воздушно-водяной смесью
С массовым внедрением рельсов из стали, выплавленной в электропечах, и в 2002-2003 гг. дороги столкнулись с проблемой их свариваемости (образование дефектов сварочного характера и недостаточная прочность и пластичность сварных стыков).
В 2000 г. был принят ГОСТ Р 51685-2000 "Рельсы железнодорожные. Общие технические условия", и все рельсы массовых поставок для железных дорог изготавливаются в соответствии с ним. По техническим требованиям к химическому составу и механическим свойствам рельсы мартеновского, конвертерного и электропечного производства не различаются. Кроме того, фактическая прочность и твердость металла почти такие же, как у рельсов, выпущенных по старым стандартам.
Однако рельсы электропечного производства НКМК отличаются большей чистотой по неметаллическим включениям и содержанием ряда примесей легирующих элементов по верхнему пределу, регламентированному ГОСТ. Поэтому рельсовый металл имеет склонность к подкаливанию зоны сварного шва. В результате при контактной сварке необходим более концентрированный нагрев м^т^ма-*-выоспшпшч11Лъная-€4шрость осадки (минимально около 35-40 мм/с).
Во время испытаний рельсов на статический поперечный изгиб и при изломах в пути в плоскости излома видны матовые пятна серого цвета. При исследовании микроструктуры образцов в зоне этих пятен в сварном шве обнаружены неметаллические включения, не выдавленные при осадке в процессе сварки.
Анализ карт поверхности изломов в характерном рентгеновском излучении с помощью прибора САМЕВАХ 8X50 показал наличие различных, но преимущественно алюмино-кальциевых неметаллических включений. Такие включения значительно снижают прочность сварного стыка рельсов. Это характерно для контактной стыковой сварки рельсов из электростали непрерывным оплавлением и необеспечением достаточных скоростей закрытия искрового зазора при осадке.
Микроисследования подтверждают, что разрушение после статических - испытаний проходит по сварному шву. Во время исследования микроструктуры шва помимо неметаллических включений, часто встречаются рыхлости, что указывает на недостаточно уплотненный металл (см. рис.1, я).
В стационарных условиях рельсосварочных поездов проблему сварки рельсов электропечного производства удается решить с помощью сварочных машин типов К-1000 и МСР-6301, обладающих большой электрической мощностью, имеющих гидроаккумуляторы и выполняющих сварку методом пульсирующего оплавления, а также термообработки сварных стыков.
При разработке технологии сварки современных российских, а также импортных рельсов для достижения высокого качества шва необходимо предусмотреть регулировку интенсивности и ширины разогрева концов рельсов в процессе оплавления. Применяемый на контактных машинах старого поколения (типов К-190, К-355) способ непрерывного оплавления уже не может в полном Iобъеме обеспечить эти требования.
Контактные машины типа К-355, составляющие более 80 % парка оборудования для сварки в пути, были созданы более 30 лет назад, они не имеют гидроаккумуляторов (максимальная начальная скорость осадки 25 мм/с) и не могут выполнять сварку методом пульсирующего оплавления. Поэтому при сварке 1 некоторых партий новых рельсов возникают проблемы, связанные с получением нужных прочности и пластичности стыков.
Наиболее перспективный способ пульсирующего оплавления разработан в ИЭС им. Е.О. Патона НАН Украины. В России он применяется с 1997 г. на стрелочных заводах для сварки деталей стрелочных переводов. Сущность способа заключается в том, что сопротивление между рельсами во время оплавления непрерывно поддерживается на уровне, обеспечивающем максимальную полезную мощность, генерируемую в месте контакта деталей. При одинаковых мощности и напряжения в сварочной цепи сила тока при пульсирующем оплавлении выше в 1,5-2,5 раза, чем при непрерывном, и поддерживается во время Iсварки постоянной. Увеличивается скорость нагрева и уменьшаются припуски на оплавление рельсов. Можно получать концентрированный нагрев в зоне разогрева. Это сокращает время сварки. Изменение скорости оплавления регулируется по кривой тока. В компьютерной системе задается скорость оплавления Vи наклон кривой силы тока I. Меняя эти параметры, можно изменить интенсивность нагрева в зависимости от необходимого тепловложения в стык для разных марок сталей.
Новые марки сталей, которые начали или планируют использовать металлургические комбинаты (в частности, Э76, Э76Ф), требуют более интенсивного и равномерного разогрева концов рельсов.
Непрерывное регулирование параметров сварки, в том числе и перед осадкой, достигаемое быстродействующими регуляторами, обеспечивает более ровную поверхность оплавления торцов рельсов. Кроме того, кратеры на торце во время оплавления имеют меньшую глубину, что понижает вероятность образования различных дефектов в сварном стыке.
В Комплексном отделении "Сварка" ВНИИЖТа исследовали металл сварных соединений рельсов, выполненных пульсирующим оплавлением. При разработке режимов сварки в РСП испытывали контрольные образцы рельсов на поперечный статический изгиб с расстоянием между опорами 1 м. Средние значения разрушающей нагрузки для новых рельсов типа Р65 при растяжении подошвы составляют 2400 кН, при растяжении головки - 2200 кН; стрелы прогиба в среднем равны 36 мм и 35 мм соответственно. Для новых рельсов типа Р75 эти значения составляют соответственно 2720 кН и 2100 кН, 38 мм и 22 мм.
При макроисследованиях темплетов сварных рельсов дефекты сварочного характера не обнаружили, ширина зоны термического влияния узкая и составляет 13-15 мм в одну сторону от сварного шва, что в 1,5 раза меньше чем при "классическом" непрерывном оплавлении. На рис.2 представлены продольные макротемплеты и распределение твердости по поверхности катания сварных стыков после различного вида оплавления. В образцах, вырезанных из сварного рельса, после травления 4-процентным раствором азотной кислоты выявляются шесть участков, из которых состоит околошовная зона.
Микроструктура сварного шва - это крупнозернистый сорбитообразный перлит и ферритная сетка вокруг зерен. Ширина сварного шва 0,3-0,5 мм. Металл шва хорошо уплотнен, неметаллических включений нет. За зоной шва следует зона неполного расплавления, структура которой также состоит из крупнозернистого сорбитообразного перлита с обрывками ферритной сетки. Усадочных рыхлостей и загрязнений неметаллическими включениями нет.
В этой зоне неполного расплавления нарушается связь между волокнами, и от ее осадки зависит качество сварного стыка.
При недостаточной осадке могут остаться незаваренными мелкие усадочные пустоты, а иногда скопления загрязнений на месте бывших очагов плавления.
Следующие зоны - рекристаллизации или крупного зерна, далее нормализации или мелкого зерна, потом - неполной нормализации и основной металл.
Средняя твердость сварного шва - 290 НВ, зон перехода к основному металлу - 270 НВ, что характерно для стыков рельсов, термически не обработанных после сварки.
Ширина зоны разупрочнения металла стыка рельса, сваренного методом непрерывного оплавления, составляет 80 мм, методом пульсирующего - 50 мм (см. рис.2, б).
Существенное уменьшение ширины этой зоны при пульсирующем оплавлении значительно увеличит эксплуатационную стойкость рельсов.
Рис.2. Макроструктура и твердость сварных стыков; а - характер зоны термического влияния после сварки рельсов соответственно пульсирующим и непрерывным оплавлениями; бив - распределение твердости металла по поверхности катания сварных стыков соответственно после пульсирующего и непрерывного оплавлений
По результатам механических испытаний и металлографическим исследованиям можно сделать вывод, что качество сварки пульсирующим оплавлением соответствует нормативно-технической документации.
В 2002 г. сотрудники ВНИИЖТа, ИЭС им. Е.О. Патона и Каховский завоД электросварочного оборудования начали внедрять такое оплавление в РСП и на машинах К-1000. Были разработаны режимы сварки рельсов типов Р65 и Р75. К настоящему времени этот метод применяется почти^на^всех машинах. Для сварки рельсов в пути без единовременной замены устаревшего оборудования существует техническое предложение, не требующее больших капиталовложений. Это модернизация контактных машин К-355 (гидросистемы и системы управления) для сварки рельсов методом пульсирующего оплавления и оборудование ПРСМ индукционными установками для термической обработки стыков.
Рис.3. Оборудование нового поколения: а - стационарная индукционная установка типа УИН-001 - 100/РТ
Первый опыт модернизации головки К-355 осуществлен на ЗАО "Техэлектро" (г. Псков). На рис.3, я представлена сварочная головка К-355А1М с системой управления и контроля на базе промышленного компьютера. Она оснащена гидроаккумулятором для достижения высоких скоростей осадки. Модернизация выполнена в соответствии с техническим заданием Департамента пути и сооружений ОАО "РЖД". Машина испытывается в полевых условиях.