Смекни!
smekni.com

Магнитоэлектрический бесконтактный генератор с импульсным регулятором напряжения (стр. 6 из 15)

2.1.4 Определение частот вращения ротора генератора и передаточного числа привода от двигателя к генератору

Инженерный расчет генератора, сводится к перерасчету передаточного отношения привода генератора от коленчатого вала двигателя. Э.д.с фазы будем считать по формуле е=l·Vотн·Вd . Воспользуемся рядом упрощений и допущений /19/. Вектор магнитной индукции Вd перпендикулярен вектору относительной скорости движения Vотн. Магнитная индукция в зазоре равна индукции постоянного магнита Вd=Вм, так как считаем что воздушные зазоры пренебрежимо малы и линии индукции не имеют выпячиваний в воздушном зазоре ( т.е. параллельны друг другу). Тогда можно записать что:

U=l·Vотн·Вм (1)

Для перерасчета считаем, что l·Vотн=const для определенной частоты вращения. При пересчете будем опираться на технические данные ГУ Г273 и его ТСХ /20/ (Рисунок А.1 в приложении А). Также считаем, что у обмотки возбуждения магнитная индукция равна Вм1=1.7 Тл, а у выбранного магнита Вм2=1.05 Тл.

1. Расчет при холостом ходе генератора.

-частота вращения ротора генератора при Iнагр =0 и UГУ =28 В.

- следовательно, так как магнитная индукция в 1.62 раза меньше, то исходя из формулы (1) считаем, что частоту вращения ротора надо поднять с 1050 до 1700 об/мин. Так как при n=1050 об/мин и Вм2=1.05 Тл генератор не выдает необходимого напряжения в 28 Вольт (Напряжение равно только 17 В).

2. При контрольном режиме ТСХ.

при Iнагр =20 и UГУ =28 В

Соотношение Вd и Вм остается прежним 1.62 раза. Из формулы (1) находим, что чтобы обеспечить необходимое напряжение ГУ в 28 Вольт надо поднять частоту вращения генератора до 3564 об/мин.

3. При номинальном режиме работы, когда nномгу = 5000 об/мин при Iнагр =28А и UГУ =28 В, надо поднять частоту вращения ротора до 8100 об/мин.

При максимальной частоте вращения двигателя частота вращения ротора генератора должна составлять не менее 10800 об/мин.

Ввиду того, что частота вращения ротора генератора необходимая для обеспечения заданного напряжения не соответствует частоте вращения коленчатотго вала двигателя, необходимо ставить повышающий редуктор привода генератора. Примерные частоты вращения двигателя находятся в пределах 700 -4500 об/мин, минимальная частота вращения генератора 1700 об/мин.

Необходимо обеспечить токоотдачу на минимальных оборотах то, есть при минимальной частоте вращения двигателя 700 об/мин, надо чтобы генератор имел частоту вращения 1700 об/мин. Следовательно необходимо выбрать передаточное число 1700/700=2.4, (i=2.4)- повышающего редуктора от двигателя к генератору.

Так как вместо обмотки возбуждения на генераторе установлен постоянный магнит магнитный поток невозможно уменьшить при увеличении частоты вращения (Ф=const). Неизбежно повышение напряжения на выходе генератора, причем оно будет увеличиваться пропорционально увеличению частоты вращения ротора генератора. Рассчитаем во сколько раз увеличится напряжение генератора по-формуле

,где nmax и nmin частоты вращения двигателя.

Нам известны nmax =4500 об/мин, nmin =700 об/мин и Umin=28 В , тогда

.

Напряжение генераторной установки изменяется в пределах 28 ... 170 Вольт.


2.2 Выбор и обоснование типа регулятора

При заданном широком изменении входных параметров и невозможностью регулирования с помощью обмотки возбуждения целесообразным становится применение регулятора постоянного напряжения с импульсным регулированием. Они находят все более широкое применение в электронной аппаратуре. Это объясняется, в первую очередь, их высокими энергетическими и объемно-массовыми показателями. Коэффициент полезного действия таких источников может достигать 70...85 % , при этом их удельная мощность составит 120...250 Вт/дм /23/.

Регулятор постоянного напряжения представляет собой однотактный регулируемый преобразователь с гальванической связью входа и выхода. Он состоит из периодически эамыкаемого электронного ключа и шунтирующего нагрузку диода. За счет изменения соотношения между временем включенного и выключенного состояний ключа достигается регулирование выходного напряжения без потерь мощности. При этом среднее значение выходного напряжения в зависимости от схемы и режима работы может быть больше или меньше входного напряжения.

Преобразователи данного типа, охваченные контуром отрицательной обратной связи, широко применяются как импульсные стабилизаторы постоянного напряжения и тока. В зависимости от построения силовой части преобразователя (стабилизатора) можно подразделить на схемы с последовательным включением: дросселя и регулирующего транзистора; дросселя с параллельным включением транзистора; транзистора с параллельным включением дросселя /23/,/24/.

Для данного дипломного проекта выберем схему регулятора с последовательным включением дросселя и регулирующего транзистора изображенную на Рисунке 20.

Схема на Рис. 20 позволяет получить на выходе напряжение меньше напряжения на входе. Стабилизатор включает в себя силовую часть (регулирующий транзистор VT, фильтр LC и VD1); схему управления, состоящую из импульсного элемента: схемы сравнения и усиления.

Коэффициент передачи по напряжению схемы на Рис. 20 равен:

Ku=Uвх/Uвых=Тз/Т=Тз•f<1,

где Т=Тз+Тр=1/f - период частоты переключения; f- частота переключения.

Предполагая, что мощность в нагрузке равна произведению средних значений напряжения и тока нагрузки, получаем баланс энергий:

Uвх·Iвх=Uвых·Iвых,

где Iвх и Iвых - среднее значение токов i1 и i2 соответственно/24/. Это уравнение показывает, что регулятор постоянного напряжения обладает "трансформаторным" эффектом.

В регуляторах постоянного напряжения с ШИМ в качестве импульсного элемента используется генератор, длительность выходного импульса или паузы которого изменяется в зависимости от постоянного сигнала, поступающего на его вход с выхода схемы сравнения. Временные диаграммы работы силовой части регулятора показаны на Рисунке. 21.

2.3 Выбор и расчет схемы выпрямителя

Выбираем трехфазную мостовую схему выпрямления по схеме Ларионова Рис.22, по сравнению с трехфазной она имеет следующие преимущества: обратное напряжение на вентиле в 2 раза меньше; меньшая амплитуда и большая частота пульсации, возможность работы без трансформатора и т.д.

Исходные данные для расчета выпрямителя:

Максимальный и минимальный ток нагрузки Id=30 A (ток берется заведомо больше с запасом), Idmin=5 A; мощность Pd=Id·Ud В·А, номинальное входное напряжение Ud=26...170 В; работа выпрямителя на активно-индуктивную нагрузку.

Рис. 22 Трехфазная мостовая схема выпрямления.

1. Выпрямленное напряжение Ud пульсирует с частотой fп, в 6 раз большей частоты переменного напряжения поступающего с генератора.

,

где p-число пар полюсов (p=6), n- частота вращения ротора относительно статора. При частоте вращения генератора

частота пульсации fп1=0.1·6·1700=1020 Гц, а при
, fп2=0.1·6·10800=6480 Гц (Здесь и далее индексы 1 и 2 обозначают значения величин при минимальной и максимальной частотах вращения генератора).

2. Пульсация выпрямленного напряжения при соединении обмоток генератора по схеме "звезда" равна /22/:

Udmin=1.5Uфmax -минимум, и Udmax= 1.73 Uфmax - максимум.

DUd=(1.73-1.5)·Uфmax, тогда среднее значение выпрямленного напряжения (период пульсации равен Т/6): Ud=1.65· Uфmax

DUd=0.139· Ud - пульсация выпрямленного напряжения.

При Ud1=28 В , DUd1= 0.139·28=3.89 В;

при Ud2=170 В , DUd2= 0.139·170=23.63 В;

3. Напряжение на фазе генератора должно быть равно:

при Ud1=28 В,

при Ud2=170 В,

Минимальное и максимальное значение выпрямленного напряжения равно:

Udmin1=1.5·Uфmax1= 25.5 B Udmax1= 1.73·Uфmax1= 29.41 B

Udmin2=1.5·Uфmax2= 154.5 B Udmax2= 1.73·Uфmax2= 175.1 B

4. Среднее значение выпрямленного тока равно: Id=0.955· Idmax; так как Id=30 А, то Idmax=31.4 А,а ток фазы генератора Iф= 24.5 В.

5. Выбор вентилей. Определяем параметры вентилей Uобр, Iпр ср,Iпр. Напряжение Uобр находим по максимальному значению выпрямленного напряжения. Udmax2= 175.1 B, тогда Uобр=1.05· Udmax2=1.05·175=183.9 В.

Прямой средний ток через вентиль для трехфазной мостовой схемы равен Iпр ср= Id/3=10 А, а прямой ток равен Iпр=0.58· Id=0.58·30=17.4 А.

Таким образом нужно подобрать вентиль с параметрами не хуже:

Uобр=183.9 В, Iпр ср= 10 А, Iпр=17.4 А.

Выбираем из справочника /43/ вентиль 2Д2999А с параметрами:

Uобр=200 В, Iпр max=20 А, падение напряжения на диоде DUd= 1 В, частота преобразования до f=100 кГц.

6. Определяем напряжение холостого хода выпрямителя:

Udх.х1= Ud1+DUd·N=28+1·2=30 В, где N-число вентилей в группе.

Udх.х2= Ud2+DUd·N=170+1·2=172 В.

7. Внутреннее сопротивление выпрямителя при изменении тока от 0 до Id:

R0=( Udх.х2- Ud2)/ Id=(172-170)/30»0.067 Ом.

КПД выпрямителя: h=P2/(P2+ Iпр ср·DUd·6)=0.988 то, примерно 98%.

2.4 Расчет силовой части импульсного регулятора