Смекни!
smekni.com

Магнитоэлектрический бесконтактный генератор с импульсным регулятором напряжения (стр. 7 из 15)

Схема силовой части регулятора приведена на Рисунке. 23. Необходимо рассчитать все элементы этой схемы: силовой транзистор, диод, дроссель.

Исходные данные: импульснй регулятор должен обеспечить отклонение выходного напряжения не более чем на 28 ± 0.3 В, при значениях входных напряжений полученных при расчете выпрямителя.

Uвх1= Ud1=28 В; Uвхmin1=25.5 B; Uвхmax1=29.41 B;

Uвх2= Ud2=170 В; Uвхmin2=154.5 B; Uвхmax2=175.1 B;

Uвых=28 В; Iнmin=30 А, Iнmax=30А -выходные напряжение, максимальный и минимальный номинальные токи регулятора.Необходимо обеспечить мощность отдаваемую нагрузке не менее Pd= Uвых· Iнmax=840 В·А.

1. Определяем максимальное значение относительной длительности открытого состояния транзистора gmax.

Для Uвх1=28 В

-транзистор открыт,

для Uвх2=170 В

.

2. Определяем минимальное значение относительной длительности открытого состояния транзистора gmin.

Для Uвх1=28 В

для Uвх2=170 В

2.4.1 Расчет дросселя

Определяем значение критической индуктивности исходя из условия безразрывности тока дросселя /41/.

, где fп - частота переключения ключа.

Выберем частоту переключения равной 20 кГц, это значение частоты обеспечивает удовлетворительные массогабаритные показатели стабилизатора, уменьшает потери и находясь выше частоты порога слышимости не оказывает вредного влияния на органы слуха.


Lкр2= 0.12 мГн - из условия обеспечения непрерывного тока через дроссель.

По заданной индуктивности дросселя необходимо рассчитать его параметры.

Были проведены расчеты дросселей с магнитопроводом и без магнитопровода. Расчет был проведен с помощью математического пакета MathCAD, результаты расчета приведены в Приложениях Б и В.

- Расчет параметров дросселя с магнитопроводом.

Дроссель такого фильтра обычно выполняется на П или Ш-образном сердечнике из стальных пластин или ленты. Он должен обеспечивать заданную индуктивность L=0.0002 Гн при токе I=30 А, текущем через обмотку дросселя. Расчет дросселя приведен в Приложении Б. Программа определяет ширину стержня а, поперечное сечение S, оптимальный зазор lz/2, коэффициент М, относительную длину воздушного зазора lz (в % от lm), эффективную магнитную проницаемость материала сердечника mz и толщину набора с. Также определяются основные габаритные размеры дросселя, диаметр наматываемого провода d, число витков w, омического сопротивления R и коэффициента заполнения окна медью Km.

В результате расчета были получены следующие данные:

а=1.694 см, S=4.302

, lz=1.227 мм, М=0.002, mz= 92.735

d=3.573 мм, w=27 витков, R=0.006 Ом, Km=0.213

Выбран сердечник дросселя типа ШЛ 20*25.

Примерные габариты дросселя получились такими: - ширина 80 мм

- длина 70 мм

- высота 30 мм

- Расчет параметров дросселя без магнитопровода.

Дроссели без магнитопровода проектируются для приближения их вольт-амперных характеристик к линейным, для реализации больших энергоемкостей, в тех случаях когда требуется уменьшить шум, а также обеспечить высокую добротность /25/. В Приложении В приведен подробный расчет тороидальной катушки без магнитопровода (см. Рис. 24). Программа определяет средний диаметр сечения тора а, диаметр тора D, число витков w, омическое сопротивление обмотки постоянному R_ и переменному Rr току, мощность потерь в дросселе dP, поверхность охлаждения тороида Sохл.

В результате расчета были получены следующие данные:

а=3 см, D=9 см, w=71 виток, R_=0.021 Ом, Rr=0.028 Ом

dP=26 Вт, Sохл=266.479

.

Примерные габариты тороида получились такими: - наружный диаметр 130 мм

- высота 50 мм.

Исходя из данных расчетов выбираем дроссель без магнитопровода (тороидальная катушка), по причине того, что у таких катушек очень малое поле рассеяния и, как отмечалось выше, большие энергоемкости, хорошая добротность и т.д. Кроме того, по расчетам видно, что дроссель с магнитопроводом не имеет больших преимуществ по массе и габаритам.

Рис.24 Тороидальный реактор без магнитопровода.

2.4.2 Определение параметров регулирующего транзистора

Расчет транзистора проводится для случая Uвх=170В и Uвых=28В. Для выбранной нами схемы импульсного регултора напряжение коллектор-эмиттер силового транзистора равно входному напряжению Uкэ =Uвх=170В.

1. Максимальное значение тока коллектора.

,

тогда максимальный ток протекающий через коллектор транзистора будет равен:

2. Максимальное напряжение коллектор-эмиттер силового транзистора равно входному напряжению Uкэ max =Uвх max=175 В.

3. Выбор схемы силового ключа.

По определенным параметрам транзистора были рассмотрены следующие варианты схем силового ключа на транзисторах:

- Биполярный транзистор с управляющим МДП-транзистором /35/,/36/. Такие транзисторы имеют на входе полевой транзистор с малыми токами управления, который в свою очередь управляет более мощным биполярным транзистором (Рис. 25). Управляющий МДП-транзистор обеспечивает заметное сокращение времени рассасывания за счет хороших импульсных свойств. Были рассмотрены отечественные и зарубежные составные транзисторы /34/,/40/. За рубежом выпускаются так называемые IGBT-транзисторы(биполярные транзисторы с полевым управлением).В Приложении Г приведены некоторые характеристики этих транзисторов.

Рис. 25 Биполярный транзистор с полевым управлением.

Эта схема несмотря на большие мощности рассеивания (более 160 Вт), относительно большую стоимость может быть использована наравне со схемой, которая была принята за основную в дипломном проекте.

- Параллельное включение биполярных транзисторов (Рис. 26).

Эта схема включения обеспечивает небольшие токи управления и достаточно небольшие мощности рассеивания. При выборе в качестве элементной базы был использован транзистор типа КТ890А/44/, Технические характеристики транзистора КТ890А приведены в Приложении Г.

Средний ток коллектора одного транзистора равен Iк=10 А, при трех параллельно соединенных транзисторах суммарный ток через коллектор примерно равен IкS=30 А. Ток базы необходимый для насыщения транзистора при Iк=10 А не превышает IБ=150 мА, что для трех транзисторов равно IБS=150·3=450 мА. Постоянное напряжение транзистора Uкэ =350>175 В. В цепь базы включены резисторы по 50 Ом для уравновешивания токов базы, кроме того, для предотвращения лавинного пробоя транзистора в цепь эмиттеров тоже необходимо включить резисторы.


Рис. 26 Параллельное включение биполярных транзисторов.

Мощность рассеиваемая на одном транзисторе равна:

Примем значение коэффициента насыщения Кнас равным 1.3, и определимся с остальными параметрами, считая что при входном напряжении Uкэmax=Uвхmax=175 В gmax=gmax2=0.18,Iнmax=10 A,Uкэнас=2 В,fп=20 кГц, Iкmax=11 A, tвкл=tвыкл=

, UБэнас=2.5 В, h21эmin=8. В результате расчета получили.Pк» 27.4 Вт - мощность рассеиваемая на одном транзисторе.

Тогда мощность рассеиваемая на трех транзисторах PкS=3·Pк=82.2 Вт.

Для транзисторов с такой мощностью рассеивания необходим радиатор.

2.4.3 Определение параметров диода

1. Максимальное значение тока через диод.

- обратное напряжение на диоде.

Выбираем из справочника /43/ вентиль 2Д2997А с параметрами:

Uобр=200 В, Iпр max=30 А, падение напряжения на диоде DUd= 0.85 В, частота преобразования до f=100 кГц, но так как максимальный ток через диод равен 33 А включим два диода параллельно. Суммарный ток через диоды равен 60 А, чего хватает с запасом. Падение напряжения на диоде 0.8 В, на двух диодах 1.6 В.

Мощность рассеивания на диоде без учета динамических потерь:

Такая мощность рассеивания требует применения теплоотвода (радиатора).

2.5 Выбор выходного каскада схемы управления

Для открытого насыщенного состояния транзистора необходим ток базы насыщения не менее 150 мА, что для трех транзисторов будет составлять около 450 А.

С выхода схемы управления идет сигнал ТТЛ уровня 20 мА, кроме того необходимо обеспечить гальваническую развязку цепи управления и силовой части. Для гальванической развязки применим диодную оптопару, которая обеспечивает управление в широком диапазоне изменения относительной длительности времени включения вплоть до еденицы. Выберем оптопару типа АОД 109В /42/ с параметрами: Iвхопт=10 мА, Uвх-Uвых=100 В, Uпит=1.5 В, tрас=500 нс, tср=500 нс. Её вход соединен со схемой управления, чей выход ТТЛ с открытым коллектором обеспечивает ток до 20 мА, что достаточно для зажигания светодиода оптопары.

Для усиления маломощного сигнала поступающего с выхода оптопары на базы силовых транзисторов выберем мощный операционный усилитель типа 1422УД1 с выходным током Iвых=1 А, Uвых>15 В, Uпит=15 В, Куu=50000, включенный по неинвертирующей схеме усиления. Схема выходного каскада управления приведена на Рисунке 27.