Смекни!
smekni.com

Рабочие процессы и элементы расчета механизмов автомобиля Ford Fiesta (стр. 4 из 6)


5 Расчет полуоси

5.1 Алгоритм расчета полуоси

Для полностью разгруженной полуоси определяют только напряжении кручения.

1. При прямолинейном движении:

,

где R - величина нормальной реакции на внутренний конец полуоси со стороны дифференциала.

m2 - максимальное значение коэффициента перераспределения веса.

G2 – вес, приходящийся на задний мост.

Wк = 0.2·D3 - момент сопротивления при кручении.

2. При динамической нагрузке:

где

,

B -расстояние от середины внешнего опорного подшипника до вертикали проходящей через центр опорной площадки колеса.

L – длина полуоси.

Mдин = 0,5 · Ме · i1 · i0 · kд(1+kб) - максимальный момент, передаваемый полуосью ведущего моста.

Ме - максимальный момент двигателя, Н*м;

i1, i0 - передаточные числа первой и главной передачи ;

Kд - коэффициент динамичности (Kд=1...1,3);

КБ- коэффициент блокировки.

для дифференциала с малым внутренним трением КБ = 0,1...0,2;

повышенного трения КБ = 0,2...0,6

блокированного КБ до 1.


5.2 Обоснование выбора исходных данных

Коэффициент перераспределения веса, расчётный коэффициент продольного сцепления, расчётный коэффициент поперечного сцепления, коэффициент динамичности, момент, подводимый к полуоси выбраны согласно рекомендациям в [3].

Вес, приходящийся на рассчитываемый мост, радиус колеса, колея автомобиля выбраны согласно данным в [1].

Диаметр полуоси, расстояние от середины внешнего опорного подшипника до вертикали, длина полуоси выбраны согласно рекомендациям в [4, стр. 143].

5.3 Проведение расчета

Таблица 9 - Исходные данные для расчета полуоси

Вес, приходящийся на рассчитываемый мост, Н 7500
Коэффициент перераспределения веса 1,2
Расчётный коэффициент продольного сцепления 0,8
Расчётный коэффициент поперечного сцепления 1
Колея автомобиля, мм 1400
Коэффициент динамичности 1,2
Диаметр полуоси, мм 28
Расстояние от середины внешнего опорного подшипника до вертикали, мм 80
Длина полуоси, мм 605
Радиус колеса, мм 330
Момент подводимый к полуоси, Н*м 114

Таблица 10 -Результаты расчета полуоси

Максимальные суммарные напряжения, МПа 225,49
Максимальный угол закручивания, град 0,77121
Ресурс полуоси, тыс. км. 13151

Обратившись к [3] можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и данная полуразгруженная полуось годна к эксплуатации.


6 Расчет рессоры

Упругий элемент подвески выполняющий одновременно функции упругого элемента, направляющего устройства и гасящего устройства.

6.1 Алгоритм расчета многолистовой рессоры

Зная ориентировочное число листов n и число листов, равных по длине коренному листу n1, определяют:

1) Коэффициент формы рессоры:

B = 1 -

;

2) Коэффициент увеличения прогиба:

I =

.

Длина коренных листов:

L =

,

где: Е - модудь упругости, (Е=20.5·104 МПа);

f - статический прогиб рессоры, определяемый по выбранному числу колебаний подрессоренной массы nk;

Параметры рессоры:

1) Момент инерции рессоры:

J =

;

где: Р - нагрузка на упругий элемент.

2) Число листов рессоры:

n =

;

3) Значение наибольшего напряжения:

;

где: fд - динамический прогиб рессоры.

Для получения удовлетворительной емкости подвески значение fД следует принимать равными, а если это допустимо по конструктивным возможностям то больше, чем статический прогиб f.

Вес рессоры рассчитываем по формуле:

Gp =

где: Y - постоянная, зависящая от формы рессоры.

Жесткость рессоры определяется по формуле:

C = P/f.

6.2 Обоснование выбора исходных данных

Коэффициент увеличения прогиба (I), коэффициент динамичности (KЯ), модуль упругости при растяжении (Е), длина активного участка рессоры (L) выбраны согласно рекомендациям в [5].

Нагрузка на рессору (Р), нагрузка на упругий элемент (Р), средняя скорость движения автомобиля (Vср) выбраны согласно данным в [3].

Число циклов нагружения, статический коэффициент прогиба (Dd), выбраны согласно рекомендациям в [4].

Длина рессоры (L), ширина рессоры (В), толщина рессоры (Н), число листов, равных по длине коренному листу (Nk) выбраны согласно рекомендациям в [2].


6.3 Проведение расчета

6.3.1 Расчет малолистовой рессоры

Таблица 11 - Исходные данные для расчета малолистовой рессоры

Нагрузка на рессору ( Р ), Н 3855
Длина рессоры ( L ), м 0,6
Модуль упругости ( Е ), МПа 201000
Коэффициент увеличения прогиба ( I ) 1,75
Ширина рессоры ( В ), м 0,06
Толщина рессоры ( Н ), м 0,01

Таблица 12 - Результаты расчета малолистовой рессоры

Жёсткость рессоры, МПа 0,01108
Статический прогиб, м 0,38639
Напряжение в заделке, МПа 216,33
Объём рессоры, м^3 0,23057
Удельная энергия деформации, Дж/м^3 37141

Обратившись к [2] и [3], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям.

6.3.2 Проверочный расчет малолистовой рессоры

Таблица 13 - Исходные данные для проверочного расчета

Число листов рессоры ( N ) 3
Ширина листов рессоры ( B ), м 0,06
Толщина листов рессоры ( Н ), м 0,01
Коэффициент динамичности ( K z), м 1,8
Число циклов нагружения * 10^6 ( Nb ) 2
Статический коэффициент прогиба ( Dd) 1,3
Модуль упругости при растяжении ( Е ), ГПа 210
Длина активного участка рессоры ( L ), м 0,6
Число листов, равных по длине коренному листу (Nk ) 1
Нагрузка на упругий элемент ( Р ), Н 3855
Средняя скорость движения автомобиля ( Vср ), км/ч 60

Таблица 14 - Результаты проверочного расчета

Напряжение изгиба рессоры, МПа 17,089
Статический прогиб рессоры, м 0,058751
Динамический прогиб рессоры, м 0,051001
Общий прогиб рессоры, м 0,10375
Низшая частота собственных колебаний, Гц 1,7011
Жёсткость рессоры, Кн/м 51,944
Долговечность рессоры, тыс. км 49,11

Обратившись к [8] и [3], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и данная малолистовая рессорная подвеска годна к эксплуатации.


7 Расчет амортизатора

Амортизатор - упругий элемент подвески.

7.1 Алгоритм расчета амортизатора

Поглощаемая мощность:

.

Максимальные усилия передаваемые через амортизатор:

Ро = Ко · Vам,

Ро = Ко · Vам.

Площадь наружной поверхности амортизатора:

F =

.

Диаметр рабочего цилиндра:

D =

.

Площади поперечных сечений калиброванных отверстий клапанов отдачи и сжатия:

Fo = Vам ·

,

Fo = Vам ·

,

где, Fп и Fш – площади поперечных сечений поршня и штока, они могут быть приняты:

Fп =

,

Fш = 0,1 · Fп.


7.2 Обоснование выбора исходных данных

Коэффициент сопротивления амортизатора при отдаче, коэффициент сопротивления амортизатора при сжатии, скорость перемещения поршня амортизатора, температура окружающей среды, время работы амортизатора, плотность жидкости, температура окружающей среды, коэффициент расхода жидкости, проходящей через калиброванные отверстия, длина амортизатора, максимальная температура наружних стенок амортизатора, время работы амортизатора взяты из [7].

Длина амортизатора, диаметр амортизатора выбраны согласно рекомендациям в [7].

7.3 Проведение расчета

7.3.1 Проведение проектировочного расчета

Таблица 13 - Исходные данные для проектировочного расчета
Коэффициент сопротивления амортизатора при отдаче, кН*с/м 0,6
Коэффициент сопротивления амортизатора при сжатии, кН*с/м 0,1
Скорость перемещения поршня амортизатора, м/с 0,3
Коэффициент теплоотдачи, Вт/м^2*К 0,7
Максимальная температура наружних стенок амортизатора, К 493
Температура окружающей среды, К 297
Коэф-т расхода жидкости, проходящей через калиброванные отверстия 0,09
Плотность жидкости, кг/м^3 0,0007
Длина амортизатора, м 0,39
Время работы амортизатора, с 3200

Таблица 14 - Результаты проектировочного расчета