Смекни!
smekni.com

Привод электрической лебёдки (стр. 3 из 4)

С – поправочные коэффициенты (табл. 5.2).

[P]n=0,95*1*0,83*1*2,66=2,1 кВт.

13) z=Рном/[P]n – количество клиновых ремней.

z=0,25/2,1=0,12, примем 2 ремня.

14) Сила предварительного натяжения:

.

Н,

15) Ftном*103/V=0,25*1000/7,5=33 Н – окружная сила.

16) Силы натяжения ведущей и ведомой ветвей:

Н,

Н.

17) Fоп=2*Fо*sin(a/2) – сила давления на вал.

Fоп=2*17*sin(135/2)=32 Н.


ПРОВЕРОЧНЫЙ РАСЧЁТ.

18) Проверяем прочность ремня по максимальным напряжениям в сечении ведущей ветви.

smax=s1+sи+sv£[s]p.

[s]p=10 Н/мм2 – допускаемое напряжение растяжения.

s1= Fо/А+ Ft/(2*A)=17/138+25,2/(2*138)=0,12 Н/мм2 – напряжение растяжения.

sии*h/d1=80*10,5/125=2,4 Н/мм2 – напряжение изгиба,

sv=r*V2*10-6=1250*4,72*10-6=1,5 Н/мм2 – напряжение от центробежных сил.

smax=0,12+2,4+1,5=4,02 Н/мм2 – условие выполнено.

Параметры клиноременной передачи

Параметр

Значение

Параметр

Значение

Тип ремня Межосевое расстояние,

а

Сечение ремня

Количество ремней

z

Длина ремня l

Угол обхвата ведущего шкива

a1

клиновой

350

Б

2

1000

135

Число пробегов ремня

U, 1/с

Диаметр ведущего шкива

d1

Диаметр ведомого шкива

d2

Начальное натяжение ремня

F0

Сила давления ремня на вал

Fоп

0,015

125

355

17

32


6 НАГРУЗКИ ВАЛОВ РЕДУКТОРА.

6.1 Определение сил в зацеплении закрытой передачи.(2, стр.100)

Силы в зацеплении

Значение силы

На червяке

На колесе

Окружная

Ft1= 2*Т1*103/d1 =2*7500/50,0

Ft1=300 Н

Ft2=2*Т2*103/d2=2*129000/200=1290 Н

Радиальная

Fr1= Fr2=469 Н

Fr2= Ft2*tg(a)=1290*tg(20°)=469 Н

Осевая

Fа1= Ft2=1290 Н

Fa2= Ft1=300 Н

6.2 Определение консольных сил. (2, стр.99)

Вид открытой передачи

Значение силы

Характер силы по направлению

На тихоходном валу редуктора

Муфта

Радиальная

Fм=125*ÖТ1=125*Ö129=1420 Н


7 ПРОЕКТНЫЙ РАСЧЁТ ВАЛОВ. ЭСКИЗНАЯ КОМПОНОВКА РЕДУКТОРА.

7.1 Выбор материала валов. (2, стр.110)

В проектируемых редукторах рекомендуется применять термически обработанные среднеуглеродистые и легированные стали.

Выбираем сталь 40Х. Механические характеристики стали определяем по
табл. 3.2.

sв=900 Н/мм2, sт=750 Н/мм2, s-1=410 Н/мм2.

7.2 Выбор допускаемых напряжений на кручение. (2, стр.110)

Проектный расчёт валов выполняется по напряжениям кручения. Для компенсации приближённости этого метода расчёта допускаемые напряжения на кручение применяют заниженными.

[t]к1=10 Н/мм2, [t]к2=20 Н/мм2.

7.3 Определение геометрических параметров валов. (2, стр.111)

Редукторный вал представляет собой ступенчатое цилиндрическое тело, количество и размеры ступеней которого зависят от количества и размеров установленных на вал деталей (табл. 7.1).

Ступень вала и её параметры

Быстроходный вал-червяк

Тихоходный вал

1-я под элемент открытой передачи или полумуфту

мм

Округляем до d1= dдв=20 мм

l1=1,5*d1=1,5*20=30,0 мм

Принимаем l1=30 мм

мм

Округляем до d1=32 мм

l1=1,5*d1=1,5*32=48 мм

Округляем до l1=50 мм

2-я под уплотнение крышки с отверстием и подшипник

d2= d1+2*t=20+2*2,0= 24 мм

Округляем до d2=25 мм

l2=2*d2=2*25=37,5 мм

Округляем до l2=40 мм

d2= d1+2*t=32+2*2,5=37 мм

Округляем до d2=40 мм

l2=1,25*d2=1,25*40=50 мм

Принимаем l2=50 мм

3-я под шестерню, колесо

d3= d2+3,2*r=24+3,2*2,0=30,4 мм

Округляем до d3=32 мм

l3 – конструктивно

d3= d2+3,2*r=40+3,5*2,2=47,7 мм

Округляем до d3=50 мм

l3- конструктивно

4-я под подшипник

d4=d2=25 мм

l4=Т+с=17,5+2=19,5 мм

Округляем до l4=20 мм

d4=d2=40 мм

l4=Т+с=25+2=27 мм

Принимаем l4=27 мм


7.4 Предварительный выбор подшипников качения.(2,табл.К29).

1) В соответствии с табл. К29 выбираем тип, серию, и схему установки подшипников.

Подшипники: радиальные однорядные, серия средняя для быстроходного вала, серия легкая для тихоходного выла, схема установки: враспор.

2) Выбираем типоразмер подшипников:

Быстроходный вал: 7305,

Тихоходный вал:7208 .

3) Основные параметры:

7305: d=25 мм, D=62 мм, Т=18,5 мм, Cr=29,6 кН, Cor=20,9 кН,

7208: d=40 мм, D=80 мм, Т=20,0 мм, Cr=42,4 кН, Cor=32,7 кН,


8 РАСЧЁТНАЯ СХЕМА ВАЛОВ РЕДУКТОРА. (2, стр.133)

8.1 Определение реакций опор.

БЫСТРОХОДНЫЙ ВАЛ.

1) Вертикальная плоскость.

А) Определяем опорные реакции.

åМ3=0,

Ray*(a+b) – Ft1*b + Fa1*d1/2= 0,

Ray= (Ft1* b – Fa1*d1/2)/ (a+b) = (300*0,12 – 1290*0,050/2)/0,24 = 16 Н

åМ1=0,

-Rвy*(a+b) + Ft1*a + Fa1*d1/2 = 0,

Rвy= (Ft1* a + Fa1*d1/2) / (a+b) = (300*0,12 + 1290*0,050/2)/0,24 = 284 Н

Б) Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях.

Му1= Мy4 =0 Н*м, Мy2= Ray*a= 16*0,12= 2 Н*м,

Мy2= Ray*a + Fa1*d1/2= 16*0,12 + 1290*0,050/2= 34 Н*м.

2) Горизонтальная плоскость.

А) Определяем опорные реакции.

åМ3=0,

Rax*(a+b) + Fr1*b + Fоп*с = 0,

Raх= (- Fr1*b – Fоп*с) /(a+b) = (-469*0,12 - 32*0,06)/0,24 = -243 Н

åМ1=0,

-Rвx*(a+b) – Fr1*a + Fоп*(a+b+c) = 0,

Rвх= (- Fr1*a + Fоп*(a+b+c))/ (a+b) = (- 469*0,12 + 32*(0,12+0,12+0,06)/0,24 = -194 Н

Б) Строим эпюру изгибающих моментов относительно оси У в характерных сечениях.

Мx1=0 Н*м, Мx4=0 Н*м, Мx2= Rax* a= - 243*0,12= -29 Н*м,

Мx3= - Fоп*с= - 32* 0,06= -2 Н*м,

3) Строим эпюру крутящих моментов.

Мкр= Fr1*d1/2= 469*0,050/2= 12 Н*м,

4) Определяем суммарные радиальные реакции.

Н.

Н.

5) Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях.

Н*м,

Н*м.

ТИХОХОДНЫЙ ВАЛ.

1) Вертикальная плоскость.

А) Определяем опорные реакции.

åМ4=0,

Ray*(b+c) – Fa2*d2/2 – Fr2*c = 0,

Ray = (Fa2*d2/2 + Fr2 *c)/ (b+c) = (300*0,200/2 + 469*0,10)/0,16 = 481 Н

åМ2=0,

– Fа2*d2/2 + Fr2*b – Rby*(b+c) = 0,

Rby= (- Fa2*d2/2 +Fr2*b)/ (b+c) =(–300*0,200/2 + 469*0,06)/0,16 = - 12 Н

Б) Строим эпюру изгибающих моментов относительно оси Х в характерных сечениях.

Му1= 0 Н*м,

Мy2 = 0 Н*м,

Мy3= Rby*c = -12*0,1= - 1,2 Н*м,

Мy3= Rby*c - Fa2*d2/2 = - 12*0,1 – 300*0,200/2 = - 31,2 Н*м,

Му4= 0 Н*м,

2) Горизонтальная плоскость.

А) Определяем опорные реакции.

åМ4=0,

Rax*(b+c) + Fм*(a+b+c) – Ft2*c = 0,

Raх= (- Fм*(a+b+c) +Ft2*c) /(b+c) = (-1420*(0,08+0,06+0,10)+1290*0,10)/0,16 = -1325 Н