При разработке схемы управления следует руководствоваться следующими соображениями:
– при местном управлении и мощности электродвигателя до (10…15) кВт целесообразно применять контроллерную систему управления (контроллеры серий КВ 1000 и КВ 2000), – см. приложение 11, табл.1 и 2.
– при дистанционном управлении, что имеет место очень редкое применение, и при мощности более (10…15) кВт следует применять контакторную систему управления (магнитные контроллеры постоянного тока типа БП и ВП и переменного тока типа БТ и ВТ).
Выбор аппаратуры управления должен производиться по номинальному току с учётом возможной перегрузки и термической устойчивости.
Коммутационная аппаратура силовых цепей должна отвечать следующим условиям:
1) для якорно-швартовных механизмов ток при нагрузке в якорной цепи равной 35·md2, Н не должен быть выше номинального тока аппарата, работающего в длительном режиме. Для определения выполнения этого требования необходимо определить усилие в цепи якоря
, Н и момент на валу двигателя , Н.Затем по построенной электромеханической характеристике при частоте вращения соответствующей Mдв определить ток двигателя;
2) пусковой ток двигателя при работе на характеристике, обеспечивающей отрыв якоря от грунта не должен быть выше 80% расчетного тока включения аппарата. Номинальный ток аппарата в режиме 30-минут при работе на той же характеристике не должен быть ниже 130% номинального тока обмоток электродвигателя в режиме 30-минут;
3) контакты аппарата переменного тока должны допускать протекание тока перегрузки в течение времени ,где Iн60 – номинальный ток аппарата длительного режима, А;
Iст – ток стоянки двигателя, А;
tст – время стоянки двигателя под током, с.
Для якорно-швартовного механизма tст = (30…60) с.
Для защиты обмоток короткозамкнутого асинхронного двигателя от перегрузок применяют тепловые реле типа ТРТ и другие подобные им.
При выборе тепловых реле следует учитывать, что эти реле:
– не должны срабатывать при токе Iнср = 1,1∙Iн двигателя, что гарантирует не срабатывание его при повышении напряжения до 110% номинального;
– должны срабатывать при токе Iср = (1,3…1,4)∙ Iн в течение (10…30) мин;
– должны в нагретом состоянии обеспечить подряд два пуска Iп двигателя без срабатывания;
– должны отключать двигатель при стоянки под током Iст в течение (8…12) с. с холодного состояния.
Эти требования необходимо проверить по ампер-секундной характеристике, теплового реле. (см. приложение 12).
Для защиты двигателей постоянного тока применяют реле типа РЭМ 651 и РЭМ 65, катушки, которых включают последовательно с обмоткой якоря двигателя.
Шкала номинальных токов реле РЭМ 651: 2,5; 5; 10; 25; 50; 100; 150; 300 и 600 А, а реле РЭМ65: 2,5; 5; 10; 15; 50 и 100 А.
В качестве реле напряжения для контроля величины напряжения можно применять реле РЭМ 232, которое отключается при снижении напряжения на катушке до 40% от напряжения срабатывания. Последнее может регулироваться в пределах (60…85)%.
Для контроля наличия напряжения применяются нулевые реле, которыми могут служить то же реле РЭМ 232 (его модификация) с регулировкой на напряжение отключения в пределах (0,08…0,3)∙Uкат,где Uкат – номинальное напряжение катушки, В.
По требованиям правил Российского Речного Регистра один из якорей должен быть оборудован дистанционной отдачей, из рулевой рубки и устройством замера длины вытравленной цепи. Обычно дистанционной отдачей оборудуется правый якорь.
Дистанционная отдача выполняется открытием ленточного тормоза звёздочки, для чего к приводу тормоза пристраивается пневматический или гидравлический цилиндр. При подаче в цилиндр воздуха (масла) плунжер перемещается и открывает тормоз, благодаря чему звёздочка освобождается и под весом якоря вращается в сторону “травить”. Кроме пневматических и гидравлических находят применение электромагнитные и электродвигательные системы управления тормозом, хотя как показала практика, они менее надёжны и применяются в основном на маломощных якорно-швартовных механизмах. Иногда находит применение дистанционная отдача обоих якорей.
Дистанционный замер длины вытравленной части якорной цепи осуществляют на основе сельсинной или потенциометрической связи, а также с применением электронных схем.
После разработки схемы следует составить краткую инструкцию по эксплуатации и техническому обслуживанию электропривода с приведением характерных неисправностей и методов их устранения, а также мер, направленных на безопасность обслуживания.
ОПИСАНИЕ СХЕМЫ.
На переменном токе в электроприводах брашпилей широко используются двух скоростные двигатели с контроллерным и контакторным пуском. На рисунке изображена принципиальная схема контроллерного управления эл. привода брашпиля с двухскоростным асинхронным двигателем.
Основные элементы схемы: двухскоростной эл. двигатель с кз ротором, кулачковый контроллер на два положения в обе стороны, линейный контактор КЛ, тепловые реле РТ1, РТ2, РТ3, и РТ4, электромагнитный тормоз ТМ, сигнальная лампа ЛБ, аварийная кнопка АК, выключатель ВК.
Схема работает следующим образом. При повороте пакетного выключателя получает питание катушка линейного контактора КЛ , контактор замыкает главные контакты КЛ в цепи статора двигателя и блок – контакт КЛ , шунтирующий контакт К1 контроллера. Схема подготовлена к пуску. Загорается сигнальная лампа ЛБ.
При повороте рукоятки контроллера в положение 1, например выбирать, размыкаются контакты К 2, К 5, К 6,К 7. К 8 контроллера. Двигатель подключается к сети и начинает вращаться в режиме выбирать с малой скоростью. В положении 2 рукоятки останутся замкнутыми контакты К 9, К 10, К 11 контроллера. В результате произойдет переключение фаз статорной обмотки со схемы малой скорости на схему большой скорости. Для перемены направления вращения двигателя и перехода на режим травить рукоятка контроллера поворачивается в обратном по отношению к нулевому положению направлении . В этом случае вместо контактов К 2 и К 5 замкнутся контакты К 3 и К4.Произойдет переключение фаз ( фазы А на фазу С , фазы С на фазу А ), и двигатель изменит направление вращения. Переключение скоростей производится в описанном – в положении 1 рукоятки контроллера замкнутся контакты К6, К7, К8 и обмотка статора будет включена по схеме малой скорости , в положении 2 рукоятки контроллера замкнутся контакты К9, К10, К11, и фазы обмотки статора будут включены по схеме большой скорости.
В схеме предусмотрена защита от перегрузок с помощью тепловых реле и нулевая защита ( от повторного включения ) посредством линейного контактора.1.Вешеневский С.Н. Характеристики двигателей в электроприводе. М. Энергия 1977 432с.
2.Витюк К.Т. и др. Судовые электроустановки и их автоматизация. М. Транспорт. 1977 486с.
3.ГОСТ 2.722-68; 723-68; (727-68…730-68); 732-68; 742-68; 750-68; 751-68;
755-68; 756-68 – условные обозначения
ГОСТ 761-61 – якоря
ГОСТ 228-79 – пробная нагрузка на якорные цепи
ГОСТ 3083-88 и 30055-93 – канаты
ГОСТ 6345-65 – пробные усилия
ГОСТ 5875-77 – механизмы якорно-швартовные.
ГОСТ 9891-66 – шпили швартовные.
4.Качаловский М.С. Теория и устройство судов. М. Транспорт 1968 198с.
5.Краковский И.И. Судовые вспомогательные механизмы. М. Транспорт. 1972 380с.
6.Константинов. Системы и устройства судов. Л. Судостроение. 1972 352с.
7.Кузьменков О.П. и др. Методическое пособие по курсовому проектированию Н. 1993 66с.
8.Лесюков В.А. Теория и устройство судов внутреннего плавания. М. Транспорт. 1974 320с.
9.Справочник судового электротехника, том2. Судовое электро -оборудование под редакцией Г.И. Китаенко. Л. Судостроение 1980 528с.
10. Судовые электроприводы. Справочник т.т.1,2 Л. Судостроение 1983
11. ЧекуновК.А. Судовые электроприводы и электродвижение судов. Л. Судостроение 1969 462с.
12. Шмаков М.Г. Рулевые устройства судов. М. Транспорт. 1977 280с.