Определение массы топлива
Общая масса раздела 16 складывается из массы собственно топлива Ртп, массы питательной воды для котлов Рвд и массы смазочного масла Рмс.
Ртп зависит от удельного расхода q, мощности N и времени работы t главных и вспомогательных механизмов.
Ртп = kм Σ(qi Ni ti)гл/всп,
где kм = 1,10 - 1,20 – коэффициент морского запаса. Поскольку на начальных стадиях проектирования неизвестен состав СЭУ, а следовательно неизвестны ни мощность, ни удельный расход, ни время работы вспомогательных механизмов, то расчет осуществляют введением в формулу коэффициента внутреннего потребления kв = 1,03 - 1,06 для СОД, МОД, ГТУ и 1,08 - 1,12 для ПТУ.
Таким образом
Ртп = kм kв q N t,
где q [т/кВт час] = (0,12 - 0,17)∙10-3 – для ПТУ и ГТУ, (0,15 - 0,20)∙10-3 – для СОД и МОД.
Масса питательной воды Рвд определяется из расчета пополнения утечек воды и пара и периодической смены грязной воды в котлах.
Рвд = kма1Пк tк + а2Пк + а3NПТУ,
где а1 = 0,06 - 0,08 – коэффициент утечек, а2 ≈ 2 – коэффициент смены воды, а3 = (3,0 - 3,5)∙10-3 [т/кВт] – коэффициент смены воды в паропроизводительном котле турбины (только для ПТУ), tк и Пк – время работы и паропроизводительность вспомогательных и утилизационных котлов определяемая по прототипу пропорционально D.
Рмс зависит от типа СЭУ, мощности, продолжительности работы, утечек, угара, смены загрязненного масла и т.п. При детальном расчете определяется для каждого механизма в отдельности.
Обычно массы Рвд и Рмс определяют как надбавку к массе топлива, которая в среднем составляет kт = 6 - 12 % Ртп.
Ходовое время можно t выразить как отношение дальности плавания к экономической скорости хода. Таким образом
Рт = Р16 = q kм kв kт N R /υs эк.
Определение массы оборудования
Массу оборудования судна, при наличии близкого прототипа, можно определить, используя простейшие формулы, аналогичные формулам первой группы для корпуса.
илиЕсли по заданию на проектирование требуется введение новых элементов оборудования (например, подруливающих устройств, авиатехники и т.п.), то необходимо исправить нагрузку прототипа, введя туда соответствующие статьи за счет других разделов, определить новые значения измерителей и использовать их значения в расчетах по проекту.
Определение массы балласта
Массу балласта определяют исходя из требований к посадке и остойчивости судна прямым расчетом на поздних стадиях проектирования. Для предварительных расчетов пользуются данными подходящего прототипа, считая Рб пропорциональной водоизмещению судна.
Определение массы экипажа
Значение 14 раздела зависит от количества экипажа (nэ) и автономности и складывается из трех слагаемых: массы непосредственно людей с багажом, массы провизии и массы пресной воды.
Рэ = Рлб + Рпр + Рв,
где
Рлб = рэnэ,
Рпр = kм nэ Апр рпр,
Рв = kм nэ Ав рв.
Таким образом
Рэ = рэnэ + kм nэ (Ав рв + Апр рпр),
где kм – коэффициент морского запаса, Апр– автономность по запасам провизии, Ав– автономность по запасам пресной воды, которая принимается равной 5 суткам, в случае наличия на судне опреснительной установки. В противном случае Ав= Апр. Измеритель массы экипажа рэ = 100 – 200 кг/чел, провизии рпр = 3 – 5 кг/чел∙сут, воды рпр = 100 - 300 кг/чел∙сут.
Обеспечение запаса водоизмещения и остойчивости
При выполнении расчетов нагрузки вследствие приблизительного характера формул неизбежны неточности. Кроме этого в процессе постройки в нагрузку могут быть введены новые элементы. Возможны и отступления от номинальных толщин листов, размеров местных конструкций и т.п. Все это может привести к увеличению водоизмещения по сравнению с его расчетным значением. Чтобы избежать перегрузки судна в нагрузку вводится фиктивная масса запаса водоизмещения.
Величина этой массы зависит от стадии проектирования, размеров судна, наличия близкого прототипа. Определяется в долях от водоизмещения.
Рз = Р11 = рзD
На стадии технического предложения принимается рз = 2,0 - 3,0 %, на стадии эскизного проекта – рз = 1,5 - 2,0 %, на стадии технического проекта – рз = 1,0 - 1,5 %.
Отмеченная выше перегрузка относится, как правило, к высокорасположенным частям судна, что приводит к повышению ЦТ и, следовательно, к уменьшению h. Для избежания этого в проект вводится запас остойчивости Этот запас достигается путем искусственного повышения расчетного ЦТ на величину Dzg = Dh. Таким образом, в дальнейших расчетах
zg = z’g +Dzg.
Подъем ЦТ может быть достигнут путем надлежащего размещения массы запаса водоизмещения по высоте. При наличии близкого прототипа Dzg = 10 - 25 см, при его отсутствии Dzg = 20 - 35 см.
Координата zз может быть найдена из уравнения статических моментов
Dzg = (D – Рз) z’g +Pз zз.
Тогда
zз = z’g + Dzg / рз.
Вычисленная по этой формуле величина zз обычно близка к высоте борта. Поэтому считается, что масса запаса водоизмещения принимается на палубу. Положение ЦТ запаса водоизмещения по длине судна совмещают с положением с ЦТ водоизмещения порожнем.
Уравнение масс является аналитическим выражением равенства водоизмещения судна сумме всех масс, входящих в его нагрузку:
D = Σ Pi + P,
где D – водоизмещение судна, Pi – массы, зависящие от элементов и характеристик проектируемого судна (водоизмещения, главных размерений и их соотношений, коэффициентов теоретического чертежа, мощности главного двигателя и проч.), называемые переменными, Р – массы, не зависящие от элементов и характеристик этого судна и рассматриваемые поэтому как постоянные для любого варианта проектируемого судна, соответствующего одним и тем же исходным данным, т. е. одному и тому же заданию.
К переменным массам относятся, в большинстве случаев, массы корпуса Pк, оборудования Pо, механизмов Pм, топлива Pт и балласта Pб. К условно постоянным – масса перевозимого груза Рг и масса экипажа Рэ. Масса запаса водоизмещения судна Рз, в по характеру является переменной, зависящей от водоизмещения, но нередко рассматривается как условно постоянная величина.
Уравнение масс, может быть записано в ряде модификаций, для определения водоизмещения или главных размерений проектируемого судна по технико-эксплуатационным данным задания на проектирование.
Все модификации уравнения масс подразделяются на алгебраические и дифференциальные. Уравнения масс в алгебраической форме пригодны для определения искомых элементов судов как при наличии, так и при отсутствии близкого прототипа. Использование уравнений масс в дифференциальной форме возможно только при наличии подходящего судна-прототипа, в элементы которого вносятся исправления, отражающие различие технико-эксплуатационных характеристик прототипа и проектируемого судна – грузоподъемности, скорости, дальности плавания, автономности и т. д.
Отмеченные особенности алгебраических и дифференциальных уравнений масс могут быть записаны следующим образом.
Алгебраические уравнения:
(D, L, B, T, H, …) = f(Pг, υs, r, A, …)
Дифференциальные уравнения:
D = D0 + dD; L = L0 + dL; В = В0 + dВ; …
(dD, dL, dB, dT, dH, …) = f(dPг, d υs, dr, dA, …)
где D, L, B, T, H, … – искомые элементы проектируемого судна; D0; L0; В0; Т0; Н0; … – аналогичные величины судна-прототипа; dD, dL, dB, dT, dH, … приращения этих величин; dPг, dυs, dr, dA, … – различия между технико-эксплуатационными характеристиками обоих судов.
Из сказанного следует, что уравнения масс, выраженные в алгебраической форме, более общие и универсальные по сравнению с дифференциальными.
Уравнения масс, выраженное в функции главных размещений
Если в общем уравнении масс выразить все переменные массы в функции главных размерений и коэффициентов теоретического чертежа, то это уравнение приводится к виду: