Смекни!
smekni.com

по Управление техническими системами (стр. 3 из 3)

На рисунке 1 представлен график функции w(t). Точками показаны рассчитанные значения функции от t = 1 до 13 с шагом h = 1.

График функции w(t) дает наглядное представление об изменении во времени вероятности замены машины. Чем больше значение функции при данном значении аргумента (времени), тем больше вероятность замены машины в ближайшей окрестности от этого значения времени.

2. Расчет среднего числа машин, необходимых для замены в парке за данное время.

Проведем расчет среднего числа машин, необходимых для замены в парке из N машин за время t = 6,5 лет. Результаты расчетов поместим в таблицу 2.

Таблица 2.

i

1

4

1,1

2,273

0,98819

2

8

1,556

-0,964

0,168

3

12

1,905

-2,887

0,00213

Ω(t) = Ф(zi) =1,158

Значение функции «интеграл вероятностей» Ф(zi) определяется по таблице приложения 1 с помощью линейной интерполяции.

При N = 37 за это время в парке потребуется в среднем машин для замены:

Н(0,6,5)=37*1,158=43

3. Расчет приближенного среднего значения числа замен машин в парке с использованием линейной аппроксимации параметра потока замен.

Рассчитаем приближенное значение математического ожидания числа замен машин в парке, пользуясь значениями функции w(t) и линейной аппроксимацией этой функции.

Пусть заданы нижняя граница интервала а1 = 7 и верхняя граница b1 = 12.

Тогда для одного места в парке приближенное значение среднего числа замен на этом интервале при шаге h = 1 будет:

Ω(7,12)=1{0,5[w(7)+w(12)]+w(8)+w(9)+w(10)+w(11)}=0,5(0,224+0,255)+0,28+0,271+0,238+0,236=1,265

При числе машин в парке N = 37 для замен потребуется в среднем машин:

H(7,12)=37×1,265=47

4. Вычисление среднего числа замен в парке при больших значениях времени.

Вычислим приближенное значение математического ожидания числа замен машин в парке при больших значениях времени t в установившиемся режиме, когда можно считать значение функции w(t) постоянным и равным wп.

Если заданы нижняя граница интервала а2 = 20 и верхняя граница b2 = 30, то отклонение и, следовательно, погрешности при замене значений функции w(t) установившимся значением wп, будет меньше 0,01.

При тех же значениях m = 4,0 и N = 37 предельное значение параметра потока замен

wп = 0,25 и среднее число замен на данном интервале времени получим:

Ω(20,30)=0,25×(30-20)=2,5

Затем вычислим среднее число замен машин в парке:

H(6,13)=37×2,5=92,5

Список литературы

1. Кузнецов Е.С. Управление техническими системами. - М.: МАДИ (ГТУ), 2003, 248 с.

2. Техническая эксплуатация автомобилей: Учебник для ВУЗов / под ред. Кузнецова Е.С. - М.: Наука (4-е издание, пе­реработанное и дополненное), 2001.

3. Лохов А.Н. Организация управления на автомобильном транспорте. Опыт, проблемы, перспективы. - М: Транспорт, 2001.

4. Кузнецов Е.С. Управление технической эксплуатацией автомобилей. Изд. 2-е переработанное и дополненное. - М.: Транспорт, 1990.

5. Бусленко Н.П. Моделирование сложных систем. - М.: Наука, 1978, 356 с.

6. Вентцель Е.С. Исследование операций. Задачи, прин­ципы, методология. - М.: Наука, 2001.

7. Прудовский Б.Д., Ухарский В.Б. Управление техниче­ской эксплуатацией автомобилей по нормативным показате­лям. - М.: Транспорт, 1990.