На рисунке 1 представлен график функции w(t). Точками показаны рассчитанные значения функции от t = 1 до 13 с шагом h = 1.
График функции w(t) дает наглядное представление об изменении во времени вероятности замены машины. Чем больше значение функции при данном значении аргумента (времени), тем больше вероятность замены машины в ближайшей окрестности от этого значения времени.
2. Расчет среднего числа машин, необходимых для замены в парке за данное время.
Проведем расчет среднего числа машин, необходимых для замены в парке из N машин за время t = 6,5 лет. Результаты расчетов поместим в таблицу 2.
Таблица 2.
i | iµ | |||
1 | 4 | 1,1 | 2,273 | 0,98819 |
2 | 8 | 1,556 | -0,964 | 0,168 |
3 | 12 | 1,905 | -2,887 | 0,00213 |
Ω(t) = Ф(zi) =1,158
Значение функции «интеграл вероятностей» Ф(zi) определяется по таблице приложения 1 с помощью линейной интерполяции.
При N = 37 за это время в парке потребуется в среднем машин для замены:
Н(0,6,5)=37*1,158=43
3. Расчет приближенного среднего значения числа замен машин в парке с использованием линейной аппроксимации параметра потока замен.
Рассчитаем приближенное значение математического ожидания числа замен машин в парке, пользуясь значениями функции w(t) и линейной аппроксимацией этой функции.
Пусть заданы нижняя граница интервала а1 = 7 и верхняя граница b1 = 12.
Тогда для одного места в парке приближенное значение среднего числа замен на этом интервале при шаге h = 1 будет:
Ω(7,12)=1{0,5[w(7)+w(12)]+w(8)+w(9)+w(10)+w(11)}=0,5(0,224+0,255)+0,28+0,271+0,238+0,236=1,265
При числе машин в парке N = 37 для замен потребуется в среднем машин:
H(7,12)=37×1,265=47
4. Вычисление среднего числа замен в парке при больших значениях времени.
Вычислим приближенное значение математического ожидания числа замен машин в парке при больших значениях времени t в установившиемся режиме, когда можно считать значение функции w(t) постоянным и равным wп.
Если заданы нижняя граница интервала а2 = 20 и верхняя граница b2 = 30, то отклонение и, следовательно, погрешности при замене значений функции w(t) установившимся значением wп, будет меньше 0,01.
При тех же значениях m = 4,0 и N = 37 предельное значение параметра потока замен
wп = 0,25 и среднее число замен на данном интервале времени получим:
Ω(20,30)=0,25×(30-20)=2,5
Затем вычислим среднее число замен машин в парке:
H(6,13)=37×2,5=92,5
Список литературы
1. Кузнецов Е.С. Управление техническими системами. - М.: МАДИ (ГТУ), 2003, 248 с.
2. Техническая эксплуатация автомобилей: Учебник для ВУЗов / под ред. Кузнецова Е.С. - М.: Наука (4-е издание, переработанное и дополненное), 2001.
3. Лохов А.Н. Организация управления на автомобильном транспорте. Опыт, проблемы, перспективы. - М: Транспорт, 2001.
4. Кузнецов Е.С. Управление технической эксплуатацией автомобилей. Изд. 2-е переработанное и дополненное. - М.: Транспорт, 1990.
5. Бусленко Н.П. Моделирование сложных систем. - М.: Наука, 1978, 356 с.
6. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. - М.: Наука, 2001.
7. Прудовский Б.Д., Ухарский В.Б. Управление технической эксплуатацией автомобилей по нормативным показателям. - М.: Транспорт, 1990.