Смекни!
smekni.com

способ диагностики кузова автомобиля толщиномером (стр. 4 из 10)

Бесконтактность, быстродействие (суммарное время переходных процессов может быть уменьшено до микросекунд), простота и возможность проведения измерения в агрессивных средах выгодно отличают электромагнитные измерители зазоров, диаметров и вибрации. Особенностью этих приборов является и возможность получения линейных характеристик зависимости выходного сигнала от зазора за счет применения специальных конструкций преобразователя и схем линеаризации.

Метод вихревых токов широко применяют для контроля механического состояния различных деталей кузова автомобиля.

2 АНАЛИЗ КОНСТРУКЦИЙ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ НЕМАГНИТНОГО ПОКРЫТИЯ

2.1 Измерители толщины немагнитного покрытия стальных поверхностей

При работах, связанных с нанесением защитного покрытия на стальные поверхности, часто возникает необходимость определения толщины слоя. Несмотря на кажущуюся сложность, определить это можно несколькими простыми способами. В промышленных приборах для этого обычно применяют ультразвуковые толщиномеры, которые работают на принципе эхо – локации. К защитному слою прикладывается датчик, представляющий собой пьезоэлектрический преобразователь, на который подаются пачки ультразвуковых колебаний. Ультразвуковой сигнал проходит через защитное покрытие и отражается от металлической поверхности. Отражённый сигнал улавливается датчиком, усиливается и подаётся на фазовый детектор, который сравнивает фазу посланного и отражённого сигнала, а затем выдаёт сигнал, пропорциональный времени запаздывания, а значит и толщине покрытия. Этот способ достаточно точен, но очень сложен для самостоятельной реализации. Более простые устройства можно изготовить на базе ёмкостных или индуктивных датчиков. Погрешности измерения у этих устройств гораздо выше, чем у ультразвуковых измерителей, но в большинстве случаев это не принципиально. Если покрытие лакокрасочное, то можно воспользоваться ёмкостным датчиком, который представляет собой две небольшие металлические пластины, приклеенные к диэлектрическому основанию и прижимаемые к поверхности слоя. Между пластинами измеряется ёмкость, которая зависит от диэлектрической проницаемости покрытия и от его толщины. Прибор необходимо калибровать для каждого вида лакокрасочного покрытия. Более удобны индуктивные датчики. Датчик представляет собой

миниатюрный Ш-образный трансформатор, собранный с одной стороны катушки, без замыкающих пластин. Если открытой стороной прижать его к металлической поверхности, то в зависимости от толщины немагнитного зазора, образовываемого защитным покрытием, изменяется индуктивность катушки. Один из способов измерения заключается в том, что катушку включают в качестве индуктивности LC - генератора низкой частоты. Далее сигнал подаётся на частотный детектор, а затем на устройство индикации.Способ хорош, но достаточно сложен. Схема устройства приведена на рис 2.1.

Рисунок 2.1 – Схема индуктивного толщиномера

Устройство представляет собой генератор стабильной частоты и амплитуды, последовательно с выходом которого включается индуктивный датчик, сопротивление которого пропорционально квадратному корню от индуктивности. Напряжение после датчика детектируется, нормализуется и подаётся на устройство индикации. Для индикации можно применить небольшой стрелочный индикатор, заново отградуировав его шкалу, но более удобной является светодиодная индикация. Трансформатор собран с одной стороны, без замыкающих пластин, и залит эпоксидной смолой вместе с

остальными элементами, в небольшом корпусе. Рабочая поверхность датчика зашлифована до блеска металла.

Достоинства прибора – его небольшие габариты и возможность измерять толщину любых немагнитных покрытий, даже электропроводных, например толщину алюминиевого напыления или медного гальванического покрытия на стальной поверхности. Прибор калибруется с помощью немагнитных пластин известной толщины. В схеме можно применить любые низковольтные операционные усилители с малым потреблением тока. У выбранных типов ОУ сопротивления резисторов между выводами 4 и 8 задают потребляемый ток и составляют 1...1,5 МОм. Можно использовать сдвоенные ОУ, например LM358 или аналогичные. Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или любые инверторные логические элементы. Если требуется повысить точность аналого-цифрового преобразователя, вместо цифровой микросхемы можно применить счетверённый компаратор LM339. Ещё более упростить схему можно применив микросхему A277 (К1003ПП1) для линейной световой индикации, правда возрастёт потребляемый ток. В этом случае микросхемы К561ЛА7 и КР1533ИД3 вместе с резисторами обвязки не понадобятся - вход микросхемы подключается на выход второго ОУ. Таймер NE555N (КР1006ВИ1) в схеме используется не только как генератор стабильной частоты для датчика, но и как инвертор отрицательной полярности для получения напряжения 2В, необходимого для нормальной работы ОУ. Правильно собранная схема начинает работать сразу, остаётся только индивидуально откалибровать светодиодную линейку индикации подстроечных резисторов и немагнитных пластин известной толщины.

2.2 Измерение толщины металлических покрытий на ферромагнитном основании

Прибор, ИТП-63, позволяет в любых производственных условиях определять толщину немагнитного покрытия без разрушения самого покрытия и детали. Толщина слоя покрытия, которую можно измерить с помощью этого прибора, лежит в пределах от 0 до 100 мк. При тщательной настройке прибора им можно измерять пленки толщиной до 500 мк. Прибор крайне прост по конструкции и может быть легко повторен по описанию, приведенному в статье, радиолюбителями средней квалификации. Питание прибора осуществляется от сети переменного тока, однако при незначительных переделках его можно питать от встроенных источников тока. Толщиномер типа ИТП-63 предназначен для измерения толщины слоя хромового покрытия на ферромагнитных основаниях. Принцип действия прибора, схема которого изображена на рис. 2.2, основан на изменении индуктивного сопротивления датчика L1 в зависимости от толщины хромового покрытия.


Рисунок 2.2 – Схема толщемера

Датчик прибора включен в плечо моста. При изменении толщины покрытий (о) меняется индуктивное сопротивление датчика L1, нарушается равновесие моста и прибор на 100 мк фиксирует изменение тока. Шкала

прибора градуируется в микронах, благодаря чему можно непосредственно измерять толщину хромового покрытия.

Градуировка толщинометра производилась на специальных образцах, толщина покрытия которых предварительно определялась микрометром с высокой точностью.

Получение двух крайних точек (нуль и максимум) осуществляется изменением сопротивлений R3 и R4.

Точность градуировки прибора сильно зависит от точности изготовления самого образца.

Чувствительность толщиномера определяется величиной выбранного напряжения питания для каждого прибора (до насыщения сердечника датчика и компенсирующего устройства). С увеличением напряжения чувствительность увеличивается. Кроме этого, чем больше число витков и сечение сердечника катушек L1 и L2, тем выше чувствительность прибора. Чувствительность толщиномера в значительной степени зависит от оптимального значения сопротивлений R3, R4 и емкости конденсатора С2.

При правильном подборе указанных элементов предел измерения можно довести до 500 мк.

Конструкция датчика компенсирующего устройства показана на рис. 2.3. Катушки L1 и L2 содержат по 800 витков провода ПЭЛ-0,21. Намотка катушек датчика и компенсирующего устройства производится внавал.

Указанные сопротивления R5–R6 и термистор типа Т8Р (или ТШ-1) служат для линеаризации шкалы прибора толщинометра.

Линейность шкалы толщиномера также зависит от характеристик термистора и диодов, включенных в в плечо моста.

Для стабилизации напряжения питания использованы сопротивления R1, R2, кремниевые стабилитроны типа Д809 и последовательно включенные с ними диоды типа Д7Д.


1 – корпус; 2 – винт; 3 – клемная панель; 4 – корпус магнитопровода; 5 – сердечник; 6 – корпус катушки; 7 – обмотка катушки; 8 – защитный стакан; 9 – приужина; 10 – шнур питания; 11 – каркас катушки

Pисунок 2.3 – Датчик компенсирующего устройства

Прибор выполнен в виде переносной конструкции с горизонтальным расположением указателя и с выносным датчиком.

Размеры прибора 210х150х70 мм.

Вес прибора с датчиком 2,1 кг.

Площадь соприкосновения датчика с измеряемым объектом 27х27 мм.

Прибор питается от сети переменного тока 220 В, предел измерения 0…100 мк.