Смекни!
smekni.com

Виды дисбаланса деталей, механизмов (стр. 1 из 3)

1.

2. Виды дисбаланса деталей, механизмов

Могут быть : ошибки конструирования, нарушения технического процесса производства, технического обслуживания и ремонта автомобилей, а также при эксплуатации автомобиля .

Виды дисбаланса деталей по месту расположения можно подразделить на локальные, вызванные (трещинами, рисками, и т. д.), дефекты во всем объеме или по всей поверхности (несоответствия химического состава, качества механической обработки и т. д.) , виды ограниченных зонах объема или поверхности детали (зоны неполной закалки, коррозийного поражения, местах наклеп и т.д.). Данное место может быть внутренним ( глубинным ) или наружным.

По возможности исправления виды дисбаланса распределяются на устраняемые и не устраняемые. Устраняемый технически устраняемый и экономически целесообразно исправить. В противном случае это не устраняемый дефект .

По отражению в нормативной документации дисбаланс делят на скрытый или явный. Скрытый –дефект для выполнения которого в нормативной документации не предусмотрены необходимые правила, методы и средства контроля. В противном случи это явный дефект.

По причинам возникновения дисбаланса подразделяют на конструктивные, производственные, эксплуатационные. Конструктивные дефекты – это несоответствие требованиям технического задания или установления правилам разработки (Модернизации) продукции. Причина таких дисбалансов- ошибочный выбор материала изделия, неверное определения размеров деталей, режима термической обработки . Эти виды являются следствии несовершенства конструкции и ошибок конструирования. Производственные дефекты- несоответствия требованиям нормативов документации на изготовление, ремонт или поставку продукции. Производственные дефекты возникают в результате нарушения технологического процесса при изготовлении или восстановлении деталей. Эксплуатационные – это виды дисбаланса, которые возникают в результате изнашивания, усталости, коррозии деталей, а также неправильной эксплуатации. Наиболее частой встречаются следующие эксплуатационные виды дисбаланса: изменения размеров и геометрической формы рабочих поверхностей, нарушения требуемой точности взаимного расположения рабочей поверхностей, механические повреждения, коррозионное повреждения, изменения свойств физико-механических свойств материала деталей.

Дисбалансы, возникающие у сборочных единиц, - потеря жесткости соединения; нарушения контакта поверхности, посадки деталей и размерных цепей. Потеря жесткости возникает в результате ослабления резьбовых и заклепочных соединений. Нарушения контакта – это следствие уменьшения площади прилегания поверхностей у соединяемых деталей, в результате чего наблюдается потеря герметичности соединений и увеличения ударных нагрузок. Нарушения посадки деталей вызывает увеличения зазора или увеличения натяга. Нарушения размерных цепей происходит благодаря изменения соосности, перпендикулярности, параллельности и т. д. что приводит к нагреву деталей, повышения нагрузки, изменения геометрической формы, разрушения детали.

Дефекты, возникающие у деталей в целом, - нарушения целостности (трещины, обломки, разрывы и т. д.), несоответствие формы( изгиб, скручивание, вмятины и др.) и размер деталей. Причины нарушения целостности ( механические повреждения) деталей- это превышение допустимых нагрузок в процессе эксплуатации, которые воздействуют на деталь или из-за установки материала детали, которые работают в условиях циклических знакопеременных или ударных нагрузок. Если на деталь воздействуют динамические нагрузки, то у них может возникнуть несоответствия формы (Деформация).

Дефекты, возникающие у отдельных поверхностей, - несоответствие размеров, формы, заимного расположения, физико-механических свойств, нарушения целостности. Изменение размеров и формы( нецилиндричность, неплоскостность и т. д.) поверхностей деталей происходит в результате их изнашивания, а взаимного расположения поверхностей ( не перпендикулярность, не соосносность и т. д.) – из- за неравномерного износа поверхностей, внутренних напряжений или остаточной деформаций. Физико- механические свойства материала поверхностей деталей изменяется в следствие нагрева их в процессе работы или износа упрочненного поверхностного слоя и выражается в снижении твердости. Нарушение целостности поверхностей деталей вызывается коррозионными, эрозионными или кавитационными поражениями. Коррозионные повреждения (сплошные окисные пленки, пятна, раковины и т. д.) возникают в результате химического или электрохимического взаимодействия металла детали с коррозионной средой. Эрозионные и кавитационные поражения поверхностей возникают при действии на металл потока жидкости, движущейся с большой скоростью. Эрозионные повреждения металла со струей жидкости, что приводит к образованию пленак окислов, которые при трении потока жидкости о металл разрушаются и удаляются с поверхности, а на поверхностях деталей появляются пятна, полосы, вымоины. Кавитационные повреждения (каверны) металла происходит тогда, когда нарушается сплошность потока жидкости и образуется кавитационные пузыри, которые находясь у поверхности детали, уменьшаются в объеме с большой скоростью, что приводит к гидравлическому удару жидкости о поверхность металла .

В реальных условиях наблюдается сочетание дефектов.

2.Применения процесса железнения и других гальванических покрытий в авторемонтном производстве.

Процесс железнения представляет собой осаждение металла на ремонтируемую поверхность детали в водных растворах солей железа. Он нашел широкое применение при восстановлении деталей с износом от нескольких микрометров до 1,5 мм на сторону. Производительность процесса железнения примерно в 10 раз выше, чем при хромировании. Средняя скорость осаждение металла составляет 0,72 … 1 мкм/с, а выход металла по току равен 80…95%.

Железнение возможно из водных растворов сернокислых или хлористых закисных солей. Сернокислые электролиты по сравнению с хлористыми менее агрессивны, ниже по производительности и при одних и тех же условиях электролиза осадки откладываются хрупкие, с большими внутренними напряжениями. Исходный материал сернокислых электролитов дороже хлористых. В ремонтной практике наибольшее распространение получили хлористые электролиты. Выбор того или иного электролита зависит от условий работы деталей и производственный возможностей предприятий.

Электролит готовят растворением в воде солей хлористого железа и других компонентов. Если для приготовления электролита используется струшка из малоуглеродистой стали, то ее перед употреблением подвергают обезжириванию в 10…15%-ном растворе каустической соды при температуре 80…90 °С, а затем промывают в горячей ( t=60…80 °С) воде. После этого обезжиренную стружку травят до насыщения соляной кислоты.

Электролиты бывают горячие и холодные. Горячие электролиты ( t = 60…95 °С) производительней холодных, но при работе с ними необходимы дополнительный расход энергии на поддержание высокой температуры электролита, частая его корректировка, дополнительная вентиляция и большая предосторожность со стороны рабочих.

Холодные электролиты ( t< 50 ˚С) устойчивее против окисления. Позволяют получать качественные покрытия с лучшими механическими свойствами. Во все холодные электролиты вводится хлористый марганец, который замедляет образование дендритов и способствует получению гладких покрытий большой толщены. Марганец на электроде не осаждается и сохраняется в электролите длительное время.

При железнении применяют растворимые аноды, изготовленные из малоуглеродистой стали с содержанием углерода до 0,2 %. При электролизе аноды растворяются, образуя на поверхности нерастворимый шлак, состоящий из углерода, серы, фосфора и других примесей. Попадая в ванну, они загрязняют ее и ухудшают качество покрытия. Во избежание этого аноды необходима помещать в диафрагмы из пористой керамики или чехлы, сшитые из кислотостойкого материала ( стеклоткань, шерсть и др.)

Железнение проводят в стальных ваннах, внутренние стенки которых облицовывают кислотостойкими материалами ( антегмитовая плита АТМ-1, эмаль типа 105А, железокремниймолибденовый сплав МФ-15, кислостойкая резина, фторопласт-3, керамика, фарфор).

Один из существенных недостатков процесса железнения- большое количество водорода в осадке (до 2,5 м³ на 1 мкг осадка). Он в осадке находится в различных формах и отрицательно влияет на механические свойства восстановленных деталей. С целью освобождения от водорода в осадке необходима детали после железнения подвергать низкотемпературному сульфидированию с последующей размерной чистотой обработкой пластическим деформированием. В этом случае усталостная прочность деталей повышается на 40… 45%, а износостойкость возрастает в 1,5…2 раза.

При восстановлении крупногабаритных деталей сложной конфигурации ( блоки цилиндров, картеры коробок передач и задних мостов, коленчатые валы и другие) возникают трудности, связанные с изоляцией подлежащих покрытию ( площадь их поверхности в десятки раз превышает покрываемую площадь), сложной конфигурацией подвесных устройств, необходимостью иметь ванны больших размеров, быстрым загрязнением электролитов и т. д. Для железнения таких деталей применяют вне ванный способ.

Способы вне ванного осаждения металлов. Струйное железнение. С помощью насоса электролит подают струями в межэлектродное пространство через отверстия насадки. Насадок одновременно служит анодом и местной ванночкой. Для получения равномерного покрытия деталь вращается с частотой до 20 мин¯¹. Железнение возможно из концентрированного холодного хлористого электролита при плотности тока Dк = 40…55А/дм² с производительностью 0,4 мм/ч. Для упрощения технологического процесса применительно к ремонту шеек коленчатых валов разработана электролитическая ячейка, которая дает возможность вести железнение и хромирование шеек без вращения детали. В эту ячейку электролит поступает под давлением через патрубок 1 и благодаря наклонному расположению отверстий в цилиндрическом аноде 8 приобретает вращательное движение вокруг катода. Скорость протекания электролита в аноднокатодном пространстве принимают 100…150 см/с при удельном его расходе 40… 45 л/мин на 1 дм² покрываемой поверхности.