В качестве СУБД на этапе первичного накопления данных используется InterBase компании Borland. В дальнейшем планируется переход на платформу Oracle.
Возможны несколько режимов доступа к ОБД:
Доступ в информационно-аналитическом режиме осуществляется посредством Web-браузера в пределах внутренней сети передачи данных в виде WEB-сервисов.
Доступ в режиме обмена данными осуществляется в пакетном режиме по оговоренному протоколу.
Интеграция с другими подсистемами осуществляется по оговоренному протоколу обмена данными либо в режиме предоставления/запроса сервисов.
Доступ в режиме администрирования и системной диагностики осуществляется специализированным программным обеспечением удаленно (RemoteDesktopConnection), либо с консоли сервера.
Для доступа к функциональности информационно-аналитического режима (экранные формы, таблицы, диаграммы, отчеты и т.д.) на клиентской стороне достаточно наличие установленного WEB-браузера компании Microsoft.
1.3. Модернизация системы диагностики топливной аппаратуры
При выполнении основных текущих ремонтов тепловоза обычно проводят полные реостатные испытания, которые состоят из обкаточных (4 часа) и сдаточных (1 часа). В настоящее время для их осуществления широко применяются ролика-лопастные расходомеры.
Для проведения реостатных испытаний и настройки характеристик дизеля 10Д100 тепловоза 2ТЭ10М выбран типоразмер двух измерительных расходомеров, установленных между топливным баком и дизелем тепловоза. Установлено, что наиболее предпочтительны для установки на пунктах реостатных испытаний расходомеры типоразмера НОРД-40/2С, что, в частности, подтверждено опытом применения расходомеров НОРД-40С в депо Узловая.
Эффективность предлагаемой настройки генераторных характеристик была оценена применительно к магистральным тепловозам 2ТЭ10М, исходя из сравнения предполагаемой настройки дизеля с оптимальной, рекомендуемой инструкцией [15].
В качестве начальных параметров используются данные о поездках тепловоза 2ТЭ10М на реальном участке профиля пути в течение 475,6 мин (7,9 ч), а базовые показатели дизеля принимаются по паспортным показателям дизеля 10Д100. Далее определяется повышение расхода топлива, планируемое
по результатам реальной выполненной поездки на номинальном режиме работы дизеля.
Начальный этап предусматривает определение среднеэксплуатационной экономичности по оптимистическому направлению анализа. Анализ базируется на условии работы дизеля при наилучшей теоретически возможной топливной экономичности. Методика ее определения сводится к нахождению среднеэксплуатационной топливной себестоимости единицы работы, выполненной дизелем на всех эксплуатационных режимах, при условии сохранения на каждом промежуточном режиме паспортных показателей по удельному эффективному расходу топлива. Далее учитывается вся эксплуатационная работа, выполненная дизелем.
Таблица 1.2.
Результирующие данные генераторных характеристик
Параметры | Режим настройки дизеля | ||
Оптимальный | Неоптимальный | ||
1 | 2 | 3 | |
Общее время движения поезда по участку, мин (ч) | 475,6 (7,93) | ||
Общее время движения тепловоза в режиме тяги, мин (ч) | 346,1 (5,8) | ||
Средняя мощность дизеля в режиме движения тепловоза, кВт | 1094,7 | 1090,9 | |
Средняя мощность дизеля в режиме тяги тепловоза, кВт | 1494,7 | 1490,2 |
Окончание табл. 1.2.
1 | 2 | 3 |
Средний часовой расход топлива дизелем тепловоза только на тягу, кг/ч | 339,5 | 350,2 |
Средний часовой расход топлива дизелем тепловоза за врёмя поездки, кг/ч | 345,2 | 356,0 |
Удельный эффективный расход топлива дизелем в режиме движения тепловоза, кг/кВт·ч | 0,3 | 0,326 |
Удельный эффективный расход топлива дизелем в режиме тяги тепловоза, кг/кВт·ч | 0,2 | 0,2 |
Общий расход топлива тепловозом за поездку, кг | 2737,4 | 2823,1 |
Среднеэксплуатационная ПКМ в режиме тяги тепловоза | 9,9 | |
Экономия топлива за поездку, кг (%) | 85,7 (3,1) | - |
Результирующие данные генераторных характеристик сведены в табл. 1.2. ролико-лопастные расходомеры используются также для проверки и регулирования топливных насосов высокого давления (ТНВД) во время диагностики дизеля на основных видах деповских ремонтов. Использование высокоточных широкодиапазонных ролико-лопастных расходомеров позволяет выполнять диагностику ТНВД и оперативное регулирование цикловой подачи ТНВД непосредственно на дизеле.
В результате использования ролико-лопастных расходомеров при регулировке топливной аппаратуры на пункте реостатной диагностики, по данным локомотивного депо Узловая, экономия расхода топлива в среднем составила 14,1 дм3 за один час работы дизеля под нагрузкой, что при плотности дизельного топлива, равной 0,84 кг/дм3, соответствует 11,8 кг/ч на один тепловоз. Тогда экономия топлива при настройке топливной аппаратуры с применением ролика-лопастных расходомеров в год на один тепловоз составит 105,3 тыс. руб. в год на один локомотив.
При расчете экономии топлива при регулировании тепловозных характеристик дизеля на пунктах реостатной диагностики принимается, что топливная экономичность уменьшается в течение первых 10 дней по мере удаления от момента выполнения регулировки дизеля. В остальные 20 дней экономии топлива нет, что соответствует наихудшему варианту из встречавшихся на практике. Тогда экономия топлива на один тепловоз в год составит 11,7 т при условии, что в течение суток локомотив в режиме тяги работает половину времени.
Учитывая, что годовая производительность локомотива составляет в среднем по сети 290 525 766 т·км брутто в сутки, годовая экономия топлива (без учета экономии масла) при использовании ролико-лопастных расходомеров на один тепловоз составляет 30,3 т.
Учитывая затраты на содержание устанавливаемого оборудования и амортизационные отчисления, затраты депо составят 56 тыс. руб. в год. В расчете на один локомотив величина затрат на содержание и амортизацию при средней численности 40 локомотив в депо, составит 1,4 тыс. руб. в год. При расчете себестоимости перевозок методом расходных ставок эта величина относится на условно-постоянные не зависящие от объема перевозок, которые при определении себестоимости по методу расчетных ставок принимаются в процентном отношении от величины зависящих расходов на 1000 т·км нетто.
Результаты экономии эксплуатационных расходов от внедрения ролико-лопастных расходомеров на пунктах реостатной диагностики тепловозов и пунктах экипировки локомотивов 2ТЭ116 приведены в табл. 1.3.
Внедрение ролико-лопастных расходомеров на пунктах реостатной диагностики дизелей поездных тепловозов обеспечивает уменьшение расходов на перевозки на 0,2 % в части расходов локомотивного хозяйства [15].
Таблица 1.3.
Количественная оценка влияния внедрения ролико-лопастных расходомеров на пунктах реостатной диагностики тепловозов и пунктах экипировки локомотивов на расходы локомотивного депо
Наименование алькуляционных измерителей, расходы по которым меняются при внедрении технологии | Величина измерителя | Расходная ставка, р. | Величина расходов, р. | Изменения | |
расходной ставки, р. измерителя, кг | нормы топливно- энергетических ресурсов, % | ||||
Расход условного топлива: при базовых условиях после введения технологии | 10,3545 10,1472 | 6,177 6,177 | 63,959 62,672 | - -0,2071 | -2,0 |
Независящие расходы: до внедрения технологии после введения технологии | - - | - - | 482,979 482,984 | - +0,0084 | - +0,0012 |
Себестоимость перевозок: до внедрения технологии после введения технологии | - - | - - | 678,985 677,714 | - -1,271 | - -0,187 |
Данная методика расчета топливной экономичности при использовании ролико-лопастных расходомеров на пунктах реостатной диагностики действительна и для депо, эксплуатирующих другие, серии тепловозов. А подход к оценке экономического эффекта использования ролико-лопастных расходомеров на пунктах реостатной диагностики может быть использован и для локомотивных депо промышленного транспорта, применяющих тепловозы с электрической передачей [15].
1.4. Модернизация привода клапанов газораспределения
тепловозных дизелей
Традиционный механический привод клапанов газораспределения современных тепловозных двигателей ограничивает возможности их форсирования по частоте вращения и снижает моторесурс. Дело в том, что локомотивные энергетические установки большую часть времени работают на неноминальных режимах, и в этих условиях механический привод клапанов не обеспечивает требуемого гибкого газораспределения для оптимального протекания процессов очистки и наполнения цилиндров двигателя.