Смекни!
smekni.com

Биохимический контроль в спорте (стр. 5 из 6)

После выполненных физических нагрузок в крови могут появляться отдельные изоформы ферментов — креатинкиназы, лактатдегидрогеназы, характерные для какой-то отдельной ткани. Так, после длительных физических нагрузок в крови спортсменов появляется изоформа креатинфосфокиназы, характерная для скелетных мышц; при остром инфаркте миокарда в крови появляется изоформа креатинкиназы, характерная для сердечной мышцы. Если физическая нагрузка вызывает значительный выход ферментов в кровь из тканей и они долго сохраняются в ней в период отдыха, то это свидетельствует о невысоком уровне тренированности спортсмена, а, возможно, и о предпатологическом состоянии организма.

Гормоны, При биохимической диагностике функционального состояния спортсмена информативными показателями является уровень гормонов в крови. Могут определяться более 20 различных гормонов, регулирующих разные звенья обмена веществ. Концентрация гормонов в крови довольно низкая и обычно варьируется в пределах от 10~8 до 10~11 моль • л~1, что затрудняет широкое использование этих показателей в спортивной диагностике. Основные гормоны, которые используются при оценке функционального состояния спортсмена, а также их концентрация в крови в норме и направленность изменения при стандартной физической нагрузке представлены в табл. 4.

Величина изменения содержания гормонов в крови зависит от мощности и длительности выполняемых нагрузок, а также от степени тренированности спортсмена. При работе одинаковой мощности у более тренированных спортсменов наблюдаются менее значительные изменения этих показателей в крови. Кроме того, по изменению содержания гормонов в крови можно судить об адаптации организма к физическим нагрузкам, интенсивности регулируемых ими метаболических процессов, развитии процессов утомления, применении анаболических стероидов и других гормонов.

Витамины. Выявление витаминов в моче входит в диагностический комплекс характеристики состояния здоровья спортсменов, их физической работоспособности. В практике спорта чаще всего выявляют обеспеченность организма водорастворимыми витаминами, особенно витамином С. В моче витамины появляются при достаточном обеспечении ими организма. Данные многочисленных исследований свидетельствуют о недостаточной обеспеченности многих спортсменов витаминами, поэтому контроль их содержания в организме позволит своевременно скорректировать рацион питания или назначить дополнительную витаминизацию путем приема специальных поливитаминных комплексов.

Минеральные вещества В мышцах образуется неорганический фосфат в виде фосфорной кислоты (Н3Р04) при реакциях перефосфорилирования в креатинфосфокиназном механизме синтеза АТФ и других процессах. По изменению его концентрации в крови можно судить о мощности креатинфосфокиназного механизма энергообеспечения у спортсменов, а также об уровне тренированности, так как прирост неорганического фосфата в крови спортсменов высокой квалификации при выполнении анаэробной физической работы больше, чем в крови менее квалифицированных спортсменов.

Таблица 4. Направленность изменений концентрации гормонов в крови при физических нагрузках.

Направленность
Гормон Концентрация в крови, нг • л'1 изменения концентрации при физических
нагрузках
Адреналин 0-0,07
Инсулин 1—1,5
Глюкагон 70-80
Соматотропин 1-6
АКТГ 10—200
Кортизол 50-100
Тестостерон 3—12 (мужчины)
0,1—0,3 (женщины)
Эстрадиол 70-200
Тироксин 50-140

4. Биохимический контроль развития систем энергообеспечения организма при мышечной деятельности

Спортивный результат в определенной степени лимитируется уровнем развития механизмов энергообеспечения организма. Поэтому в практике спорта проводится контроль мощности, емкости и эффективности анаэробных и аэробных механизмов энергообразования в процессе тренировки, что можно осуществлять и по биохимическим показателям.

Для оценки мощности и емкости креатинфосфокиназного механизма энергообразования используются показатели общего алактатного кислородного долга, количество креатинфосфата и активность креатинфосфокиназы в мышцах. В тренированном организме эти показатели значительно выше, что свидетельствует о повышении возможностей креатинфосфокиназного (алактатного) механизма энергообразования.

Степень подключения креатинфосфокиназного механизма при выполнении физических нагрузок можно оценить также по увеличению в крови содержания продуктов обмена КрФ в мышцах (креатина, креатинина и неорганического фосфата) или изменению их содержания в моче.

Для характеристики гликолитического механизма энергообразования часто используют величину максимального накопления лактата в артериальной крови при максимальных физических нагрузках, а также величину общего и лактатного кислородного долга, значение рН крови и показатели КОС, содержание глюкозы в крови и гликогена в мышцах, активность ферментов лактатдегидрогеназы, фосфорилазы и др.

О повышении возможностей гликолитического (лактатного) энергообразования у спортсменов свидетельствует более поздний выход на максимальное количество лактама в крови при предельных физических нагрузках, а также более высокий его уровень. У высококвалифицированных спортсменов, специализирующихся в скоростных видах спорта, количество лактата в крови при интенсивных физических нагрузках может возрастать до 26 ммоль • л"1 и более, тогда как у нетренированных людей максимально переносимое количество лактата составляет 5— 6 ммоль -л"1, а 10 ммоль • л~1 может привести к летальному исходу при функциональной норме 1—1,5 ммоль-л"1. Увеличение емкости гликолиза сопровождается увеличением запасов гликогена в скелетных мышцах, особенно в быстрых волокнах, а также повышением активности гликолитических ферментов.

Для оценки мощности аэробного механизма энергообразования чаще всего используются уровень максимального потребления кислорода (МПК или ИЭ2тах), время наступления ПАНО, а также показатель кислородтранспортной системы крови — концентрация гемоглобина. Повышение уровня 1/О2тах свидетельствует об увеличении мощности аэробного механизма энергообразования. Максимальное потребление кислорода у взрослых людей, не занимающихся спортом, у мужчин составляет 3,5 л -мин"1, у женщин — 2,0 л • мин"1 и зависит от массы тела. У высококвалифицированных спортсменов абсолютная величина 1/О2тах у мужчин может достигать 6—7 л • мин"1, у женщин — 4—5 л • мин"1.

По длительности работы на уровне ПАНО судят о повышении емкости механизма энергообразования. Нетренированные люди не могут выполнять физическую работу на уровне ПАНО более 5—6 мин. У спортсменов, специализирующихся на выносливость, длительность работы на уровне ПАНО может достигать 1—2 ч.

Эффективность аэробного механизма энергообразования зависит от скорости утилизации кислорода митохондриями, что связано прежде всего с активностью и количеством ферментов окислительного фосфорилирования, количеством митохондрий, а также от доли жиров при энергообразовании. Под влиянием интенсивной тренировки аэробной направленности увеличивается эффективность аэробного механизма за счет увеличения скорости окисления жиров и увеличения их роли в энергообеспечении работы.

5. Биохимический контроль за уровнем тренированности, утомления и восстановления организма спортсмена

Уровень тренированности в практике биохимического контроля за функциональным состоянием спортсмена оценивается по изменению концентрации лактата в крови при выполнении стандартной либо предельной физической нагрузки для данного контингента спортсменов. О более высоком уровне тренированности свидетельствуют меньшее накопление лактата (по сравнению с нетренированными) при выполнении стандартной нагрузки, что связано с увеличением доли аэробных механизмов в энергообеспечении этой работы;

большее накопление молочной кислоты при выполнении предельной работы, что связано с увеличением емкости гликолитического механизма энергообеспечения;

повышение ПАНО (мощность работы, при которой резко возрастает уровень лактата в крови) у тренированных лиц по сравнению с нетренированными;

более длительная работа на уровне ПАНО;

меньшее увеличение содержания лактата в крови при возрастании

мощности работы, что объясняется совершенствованием анаэробных процессов и экономичностью энерготрат организма;

увеличение скорости утилизации лактата в период восстановления после физических нагрузок.

С увеличением уровня тренированности спортсменов в видах спорта на выносливость увеличивается общая масса крови: у мужчин — от 5—6 до 7—8 л, у женщин — от 4—4,5 до 5,5—6 л, что приводит к увеличению концентрации гемоглобина до 160—180 г • л"1 — у мужчин и до 130—150 г • л"1 — у женщин.

Контроль за процессами утомления и восстановления, которые являются неотъемлемыми компонентами спортивной деятельности, необходим для оценки переносимости физической нагрузки и выявления перетренированности, достаточности времени отдыха после физических нагрузок, эффективности средств повышения работоспособности, а также для решения других задач.

Утомление, вызванное физическими нагрузками максимальной и субмаксимальной мощности, взаимосвязано с истощением запасов энергетических субстратов (АТФ, КрФ, гликогена) в тканях, обеспечивающих этот вид работы, и накоплением продуктов их обмена в крови (молочной кислоты, креатина, неорганических фосфатов), поэтому и контролируется по этим показателям. При выполнении продолжительной напряженной работы развитие утомления может выявляться по длительному повышению уровня мочевины в крови после окончания работы, по изменению компонентов иммунной системы крови, а также по снижению содержания гормонов в крови и моче.