Пока внутриплевральное давление остается ниже атмосферного, размеры легких точно следуют за размерами грудной полости. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движением частей грудной стенки и диафрагмы.
Дыхательные движения.
Расслабление всех связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. Соответствующая мышечная активность может перевести это положение во вдох или же усилить выдох.
Вдох создается расширением грудной полости и всегда является активным процессом. Благодаря своему сочленению с позвонками ребра движутся вверх и наружу, увеличивая расстояние от позвоночника до грудины, а также боковые размеры грудной полости (реберный или грудной тип дыхания).
Сокращение диафрагмы меняет ее форму из куполообразной в более плоскую, что увеличивает размеры грудной полости в продольном направлении (диафрагмальный или брюшной тип дыхания). Обычно главную роль во вдохе играет диафрагмальное дыхание. Поскольку люди-существа двуногие, при каждом движении ребер и грудины меняется центр тяжести тела и возникает необходимость приспособить к этому разные мышцы.
При спокойном дыхании у человека обычно достаточно эластических свойств и веса переместившихся тканей, чтобы вернуть их в положение, предшествующее вдоху.
Таким образом, выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условие для вдоха. Активный выдох может возникнуть вследствие сокращения внутренних межреберных мышц в дополнение к другим мышечным группам, которые опускают ребра, уменьшают поперечные размеры грудной полости и расстояние между грудиной и позвоночником. Активный выдох может также произойти вследствие сокращения брюшных мышц, которое прижимает внутренности к расслабленной диафрагме и уменьшает продольный размер грудной полости.
Расширение легкого снижает (на время) общее внутрилегочное (альвеолярное) давление. Оно равно атмосферному, когда воздух не движется, а голосовая щель открыта. Оно ниже атмосферного, пока легкие не наполнятся при вдохе, и выше атмосферного при выдохе. Внутриплевральное давление тоже меняется на протяжении дыхательного движения; но оно всегда ниже атмосферного (т. е. всегда отрицательное).
У человека легкие занимают около 6% объема тела независимо от его веса. Объем легкого меняется при вдохе не всюду одинаково. Для этого имеются три главные причины, во-первых, грудная полость увеличивается неравномерно во всех направлениях, во-вторых, не асе части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу.
Объем воздуха, вдыхаемый при обычном (неусиленном) вдохе и выдыхаемой при обычном (неусиленном) выдохе, называется дыхательным воздухом. Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью. Она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в наспавшихся легких, называется остаточным воздухом.
Имеется дополнительный объем, который можно вдохнуть при максимальном усилии после нормального вдоха.
А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха. Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.
Минутный объем V-это воздух, вдыхаемый за одну минуту. Его можно вычислить, умножив средний дыхательный объем (Vt) на число дыханий в минуту (f), или V=fVt.
Часть Vt, например, воздух в трахее и бронхах до конечных бронхиол и в некоторых альвеолах, не участвует в газообмене, так как не приходит в соприкосновение с активным легочным кроватоком - это так называемое «мертвое» пространство (Vd). Часть Vt, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом (VA).
С физиологической точки зрения альвеолярная вентиляция (VA) - наиболее существенная часть наружного дыхания VA=f(Vt-Vd), так как она является тем объемом вдыхаемого за минуту воздуха, который обменивается газами с кровью легочных капилляров.
Газ является таким состоянием вещества, при котором оно равномерно распределяется по ограниченному объему. В газовой фазе взаимодействие молекул между собой незначительно.
Когда они сталкиваются со стенками замкнутого пространства, их движение создает определенную силу; эта сила, приложенная к единице площади, называется давлением газа и выражается в миллиметрах ртутного столба, или торрах; давление газа пропорционально числу молекул и их средней скорости. При комнатной температуре давление какого-либо вида молекул; например, O2 или N2, не зависит от присутствия молекул другого газа. Общее измеряемое давление газа равно сумме давлений отдельных видов молекул (так называемых парциальных давлений) или РB=РN2+Ро2+Рн2o+РB, где РB - барометрическое давление.
Долю (F) данного газа (x) в сухой газовой смеси мощно вычислить по следующему уравнению:
Fx=Px/PB-PH2O
И наоборот, парциальное давление давнего газа (x) можно вычислить из его доли: Рx-Fx(РB-Рн2o). Сухой атмосферный воздух содержит 2О,94% O2*Рo2=20,94/100*760 торр (на уровне моря) =159,1 торр.
Газообмен в легких между альвеолами и кровью происходит путем диффузии. Диффузия возникает в силу постоянного движения молекул газа к обеспечивает перенос молекул из области более высокой их концентрации в область, где их концентрация ниже.
Около О,3% О2, содержащегося в артериальной крови большого круга при нормальном Ро2, растворено в плазме. Все остальное количество находится в непрочном химическом соединении с гемоглобином (НЬ) эритроцитов. Гемоглобин представляет собой белок с присоединенной к нему железосодержащей группой. Fе + каждой молекулы гемоглобина соединяется непрочно и обратимо с одной молекулой О2. Полностью насыщенный кислородом гемоглобин содержит 1,39 мл. О2 на 1 г Нb (в некоторых источниках указывается 1,34 мл), если Fе + окислен до Fе +, то такое соединение утрачивает способность переносить О2.
Полностью насыщенный кислородом гемоглобин (НbО2) обладает более сильными кислотными свойствами, чем восстановленный гемоглобин (Нb). В результате в растворе, имеющем рН 7,25, освобождение 1мМ О2 из НbО2 делает возможным усвоение О,7 мМ Н+ без изменения рН; таким образом, выделение О2 оказывает буферное действие.
Транспорт O2 из крови в те участки ткани, где он используется, происходит путем простой диффузии.
Поскольку кислород используется главным образом в митохондриях, расстояния, на которые происходит диффузия в тканях, представляются большими по сравнению с обменом в легких. В мышечной ткани присутствие миоглобина, как полагают, облегчает диффузию O2. Для вычисления тканевого Po2 созданы теоретически модели, которые предусматривают факторы, влияющие на поступление и потребление O2, а именно расстояние между капиллярами, кроваток в капиллярах и тканевой метаболизм.
Самое низкое Po2 установлено в венозном конце и на полпути между капиллярами, если принять, что кроваток в капиллярах одинаковый и что они параллельны.
Физиологии наиболее важные газы - O2, CO2, N2. Они присутствуют в атмосферном воздухе в пропорциях указанных в табл. 1. Кроме того, атмосфера содержит водяные пары в сильно варьирующих количествах.
Табл. 1
Компонент | Содержание, % |
КислородДвуокись углеродаАзотАргон | 20,950,0378,090,93 |
С точки зрения медицины при недостаточном снабжении тканей кислородом возникает гипоксия. Краткое изложение разных причин гипоксии может служить и сокращенным обзором всех дыхательных процессов. Ниже в каждом пункте указаны нарушения одного или более процессов.