В том случае, если в качестве движителей рассматриваются мышцы, число неизвестных много больше степеней свободы антропоморфного механизма. Так, управление верхней конечностью с 7 обобщенными координатами в модели [34] осуществляется 32 мышцами. Движения в трех суставах нижней конечности осуществляются как минимум 9 мышцами [40, 17]. Для нахождения решения в таких моделях, когда число неизвестных больше числа уравнений, необходимо создать алгоритм управления мышцами, отличный от приводного. Поскольку координационные механизмы преодоления мышечной избыточности ясны не до конца, исследователи придумывают схемы управления двигательными действиями на основе известных математических алгоритмов. Наиболее часто встречающимся математическим способом преодоления мышечной избыточности является метод минимизации целевой функции. В биомеханических исследованиях целевые функции чаще всего отражают следующие физиологические параметры: минимумы метаболической энергии, механической работы, сил тяги мышц и т.п. Предлагаемые критерии поверхностно отражают механизмы управления ЦНС мышцами, однако для некоторых типов локомоций принцип минимума целевой функции дает результаты, близкие к экспериментально измеренным силам тяги мышц [27, 28, 31].
Механизмы управления мышечной активностью и скоростно-силовыми характеристиками мышц подробно исследованы в односуставных движениях [32, 21] и локомоциях, совершаемых преимущественно в одной плоскости, таких, как ходьба, вертикальная стойка, прыжки вверх.
Силы тяги мышц, мышечные синергии в пространственных локомоциях, к которым относится большинство спортивных движений, изучены недостаточно.
По нашему мнению, метод имитационного моделирования является подходящим инструментом, способным исследовать механизм управления в пространственных движениях человека. С помощью этого метода можно количественно оценить как внутреннюю (координационную) структуру двигательных действий (через амплитуду и знаки мышечных моментов), так и внешние проявления мышечной активности - скорости и силы в центрах масс сегментов [4].
Исследование биологических систем методом имитационного моделирования. Имитационное моделирование проводится с целью изучения сложных биологических систем. Например, энергообеспечение мышечной деятельности [20], мышечное сокращение [1]. Эти модели имеют большую размерность, и не до конца ясны и формализованы механизмы изучаемых процессов. Такие модели могут состоять как из логических (неформализованных), вероятностных, так и математических блоков.
Термин "имитация" означает такой подход к изучению систем, когда информация о функционировании этой системы и ее частей получается за счет многократного проигрывания на ЭВМ модели системы. Результатами многократного повторения модели биологического объекта с различными входными физиолого-анатомическими параметрами, формами математической связи между составляющими биологической системы являются:
а) оптимальный вариант управления системой;
б) наилучший режим функционирования;
в) рациональный способ ее применения [20, 12];
г) корригируется поведение реальной системы (например, тактические действия спортсмена на дистанции [20] и
д) делается предпочтительный выбор техники движений [6, 41].
Поскольку при моделировании биологических систем часть компонентов неизвестны или известны неточно, имитационная модель, описывающая биологический процесс, является всего лишь его копией. В зависимости от точности модельных блоков результаты компьютерного перебора модельных вариантов позволяют: а) рассчитать искомые параметры или б) определить тенденции в поведении биологической системы, в том числе и антропоморфного механизма.
Изменение некоторых входных данных антропоморфной модели влияет на силы, моменты, мощности в суставах, механическую работу, поэтому исследователь может определить, каким образом каждый параметр влияет на конечный результат. Такая постановка имитационной задачи сводится к ответу на вопрос: "Что, если?".
Имитационное моделирование в биомеханике . Метод имитационного моделирования применительно к биомеханическим задачам позволяет, не регистрируя кинематику и динамику двигательного действия, только по кинетограмме, созданной на компьютере:
а) оценить [6, 41] максимальные усилия мышц;
б) определить суставы, на которые больше всего падает нагрузка с целью предотвращения травм;
в) рассчитать механические энергозатраты и разработать эффективные варианты двигательных действий и т. п.
При построении имитационных антропоморфных компьютерных моделей исходили из того, что движение человека можно представить в виде определенной последовательности фаз, повторяющихся двигательных циклов. В большинстве локомоций человека кинематические параметры движения достаточно хорошо изучены. Известны временная длительность фаз, средняя скорость звеньев в фазах, углы и угловая скорость в суставах в начале и конце каждой фазы. Так, нормальная ходьба состоит из следующих фаз: переднего толчка, заднего толчка и маха. В беге на коньках фазовый состав движения следующий: фазы свободного проката (I фаза), одноопорного отталкивания (II фаза) и двухопорного отталкивания (III фаза) [18]. Рассмотрим задачу имитационного моделирования локомоций человека на примере бега на коньках.
Задание кинематических характеристик локомоций . При моделировании движения человека с помощью ЭВМ разработали следующий алгоритм:
а) модели тела человека придавали форму, соответствующую началу/окончанию фаз, например для бега на коньках такие положения, как "начало свободного проката", "начало одноопорного" и "окончание двухопорного положения" (рис. 1), назвали их "базисные кинематические положения";
б) задавали время между фазами и среднюю скорость полюса модели (тазобедренного сустава) в фазах;
в) в качестве интерполирующей функции - математической зависимости, дающей кинематическую последовательность между базисными точками, применяли сплайны (кубический сглаживающий или интерполяционный). Использование сплайна позволяет получить кинетограмму движения с любым временным интервалом между точками.
При выборе математической зависимости, связывающей время и кинематику движения, необходимо учитывать:
1) наличие "разрывов" в производных, т.е. таких элементов в фазах, при которых происходят быстрые изменения в скорости. Например, при постановке стопы на опору при ходьбе, беге, прыжках происходит резкое изменение вертикального ускорения. Следовательно, если рассматривать локомоции с быстро меняющейся скоростью за аппроксимирующую функцию, следует взять тригонометрические полиномы [25] или кусочно-полиномиальные функции, дающие лучшее приближение модельной кинематики к реальной в точках "разрыва" скоростей [2];
2) в том случае, если моделируются движения, у которых отсутствуют быстрые изменения скоростей, например: бег на коньках, плавание, бег на лыжах, то при построении кинетограммы подобных локомоций на ЭВМ можно использовать гладкие функции типа полиномов: алгебраического или интерполяционного сплайна [29], сглаживающих сплайнов 3-й или 5-й степени.
Начало свободного проката (А)
Начало одноопорного отталкивания (Б)
Начало двухопорного отталкивания (В)
Рис. 1. Базисные кинематические положения при моделировании бега на коньках
Рис. 2. Положительное направление моментов в суставах толчковой ноги
Рис. 3. Механическая работа в суставах толчковой ноги относительно оси X инерциального базиса при разной скорости бега на коньках
Необходимо отметить, что математические зависимости, описывающие кинематику модели (сплайны, тригонометрические полиномы), весьма чувствительны к способу задания начальных (базисных) кинематических данных и к краевым условиям [35]. Например, произвольность по времени между базисными точками может привести к тому, что кинетограмма модели станет существенно отличаться от реального движения.
Для того чтобы избежать искажения кинематики в имитационной модели перед ее созданием поступили следующим образом:
а) исследовали кинематику моделируемой локомоции (бег на коньках по прямой) с помощью видеорегистрирующей методики. Наличие исходных кинематических данных с дискретностью 40 мс (частота видеорежима PAL) дает возможность с приемлемой точностью определить кинематические параметры модели;
б) чтобы краевые условия не влияли на скорость и ускорение изучаемого движения, справа и слева от изучаемого цикла задавали дополнительно не менее трех фаз [41].
Трехмерная имитационная модель локомоций человека (на примере бега на коньках). Пространственная имитационная модель локомоций человека была реализована для бега на коньках по прямой. Уравнения модели, описывающие трехмерное движение звеньев тела, даны в [10]. Построение имитационной модели проходило в несколько этапов:
1. На первом этапе определили масс-инерционные характеристики сегментов тела конькобежца : массы, моменты инерции звеньев, положения центров масс и биомеханические длины звеньев [7, 9].
2. На втором этапе исследовали особенности движения конькобежца в двухопорной фазе. Для этого оценили величину поперечного смещения звеньев тела конькобежца, рассчитали центробежную силу, действующую на толчковый конек, и тем самым ввели ограничения на "разгрузку толчковой ноги" в двухопорной фазе. При расчете загрузки опорной ноги и моментов в суставах применяли уравнения из работы [5].