3. На третьем этапе определили аэродинамическое сопротивление сегментов тела конькобежца. Включение в модель аэродинамических сил необходимо, так как аэродинамическое сопротивление - основная тормозящая сила, действующая на конькобежцев. Коэффициенты аэродинамического сопротивления Сх для разных форм посадки конькобежцев в зависимости от скорости и вида бега: с руками или без рук, по прямой или по повороту - составили от 0,75 до 1,2 [8, 38]. Суммарная величина сопротивления воздуха для всего тела конькобежца (сила, приложенная к ОЦМ) в зависимости от формы посадки при скорости бега 15 м/c составляет 45-61 Н. Наибольшее воздействие силы аэродинамического сопротивления приходится на туловище - около 30% от суммарной силы. Аэродинамическое сопротивление голени и бедра ног не превышает 10 Н.
4. На четвертом этапе рассчитали кинематические характеристики имитационной модели бега на коньках. К ним относятся: длина шага, длительность фаз: свободного проката, одноопорного отталкивания и двухопорного отталкивания; средняя скорость по фазам, ширина "елочки", формы посадки конькобежцев.
Выше было сказано, что способ задания базисных точек кинетограммы существенно влияет на скорости и ускорения изучаемого движения и, значит, на результаты решения ОЗД. При моделировании бега на коньках для более точного задания линейных и угловых характеристик локомоций использовали данные видеосъемки конькобежцев. Перед тем как создать кинетограмму бега на ЭВМ, сначала методом биомеханической видеосьемки и компьютерных программ определяли углы, угловые скорости в суставах в трех положениях: в начале фазы "свободного проката" (рис. 1А); в начале одноопорного отталкивания (рис. 1Б); в начале двухопорного отталкивания (рис. 1В); в завершении двухопорного отталкивания (рис. 1Б).
Зная расстояние между масштабными метками на дорожке, определяли путь и среднюю скорость тазобедренного сустава (полюса модели) между базисными точками в продольном направлении.
Аналогичную последовательность в обработке кадров применяли и для видеоряда поперечных движений конькобежцев.
5. На пятом этапе в компьютерную модель включили данные по анатомическому строению мышц нижней конечности конькобежцев - точки крепления мышцы к костям, физиологический поперечник, длины мышечной и сухожильной частей, состав волокон; угол перистости [9].
6. На шестом этапе решали обратную задачу - определения динамики для 16-звенной пространственной модели тела человека.
Выходные параметры модели. В результате компьютерного моделирования бега на коньках определяли следующие биомеханические параметры:
а) управляющие (суставные) моменты;
б) механическую работу и мощность , развиваемую в суставах;
в) скорости 7 мышц нижней конечности и
г) силы тяги 7 мышц ноги.
Применение имитационного моделирования для определения биомеханических характеристик бега на коньках с рекордной скоростью. Продемонстрируем возможности метода имитационного моделирования с целью определения модельных динамических характеристик бега на коньках с рекордной скоростью. Для этого определили динамические и энергетические параметры, такие, как: а) механическая работа и б) мощность при различных скоростях бега, включая рекордную скорость 15 м/с.
Среднюю скорость бега в фазах, углы в суставах, фазовый состав движения определили на основе результатов биомеханического исследования темпо-ритмовых характеристик бега на прямой участников забегов на дистанциях 1500 и 5000 м зимних Олимпийских игр в Нагано и Солт-Лейк-Сити.
Механическая работа в зависимости от скорости бега. Моменты, направленные на разгибание в суставах (моменты относительно поперечных осей), придают ускоренное движение ОЦМ тела (рис. 2). Расчет механической работы в тазобедренном, коленном и голеностопном суставах толчковой ноги при разной скорости бега проводили в проекции на ось X инерциального базиса. Результаты расчетов представлены на рис. 3.
С увеличением скорости бега механическая работа в суставах не имеет однонаправленной тенденции к возрастанию. Так, работа в тазобедренном суставе почти не меняется - 74-69 Дж, в коленном - возрастает с 52 (V=11 м/с) до 92 Дж (V=15 м/с); а в голеностопном - увеличивается в 2,8 раза - с 55 (V=11 м/с) до 159 Дж (V=15 м/с).
Механическая мощность в суставах толчковой ноги. Помимо механической работы рассмотрим еще один показатель силовой активности мышц - мощность (также в проекции на ось X инерциального базиса). Мощность по своим составляющим: угловой скорости и моменту - в большей степени соответствует физиологическим особенностям функционирования мышцы, а именно зависимости "сила-скорость" . Увеличение скорости бега с 11 до 15 м/с меняет экстремум мощности в тазобедренном суставе на 24%. В коленном и голеностопном суставах с увеличением скорости бега максимальная мощность возрастет в два раза (рис. 4).
Заключение. Применили метод имитационного моделирования к задачам, связанным с изучением двигательной деятельности человека в экстремальных условиях. На примере бега на коньках с рекордной скоростью 15 м/с были определены "ведущие" суставы, в которых развивается максимальная мощность и совершается наибольшая механическая работа. Такими суставами являются коленный и голеностопный. С ростом скорости бега с 11 до 15 м/с механическая работа увеличивается в коленном суставе почти в два раза - с 52 до 92 Дж, в голеностопном - в три раза - с 55 до 159 Дж (см. рис. 3). Механическая суставная мощность - косвенный показатель напряженности мышечной работы - свидетельствует о том, что голеностопный сустав за счет шарнира между лезвием конька и ботинком становится ведущим суставом, обеспечивающим рост скорости бега до 15 м/с (см. рис. 4).
Рис. 4. Мощности разгибания в суставах толчковой ноги при разной скорости бега
Список литературы
1. Агапов Б.Т. Имитационное моделирование сократительной функции поперечно-полосатой сердечной мышцы: Автореф. докт. дисс. М., 1993.
2. Алешинский С.Ю. Результаты решения основной задачи биодинамики. - В кн.: Совершенствование управления системой подготовки спортсменов высшей квалификации. Биодинамика спортивной техники / Под ред. В.М. Зациорского. - М.: ГЦОЛИФК, 1978, с. 87-117.
3. Белецкий В.В. Двуногая ходьба: модельные задачи динамики и управления. - М.: Наука. 1984. - 288 с.
4. Бернштейн Н.А. О построении движений. - М.: Медгиз, 1947.- 252 с.
5. Воронов А.В., Лавровский Э.К. Моделирование на ЭВМ двухопорной фазы отталкивания конькобежцев на прямой // Теория и практика физ. культуры. 1989, № 2, с. 29-32.
6. Воронов А.В., Лавровский Э.К. О моделировании рациональных вариантов техники бега на коньках. - В кн.: Современные проблемы биомеханики, 1992, вып. 7, с. 144-163.
7. Воронов А.В., Селуянов В.Н., Чугунова Л.Г. Распределение массы тела конькобежцев разной квалификации // Конькобежный спорт: Ежегодник. - М.: ФиС, 1983, с. 43-44.
8. Воронов А.В., Юдин Г.В., Белякова З.Н. Исследование свойств обтекания и величины лобового сопротивления плохообтекаемого тела на примере спортсмена-конькобежца. - ВИМИ, депонированная рукопись, 23 декабря 1986 г., № Д07075, серия "СВ" выпуск 04 за 1986 г.
9. Воронов А.В. Анатомическое строение и биомеханические характеристики мышц и суставов нижней конечности. - М.: Физкультура, образование и наука, 2003. - 203 с.
10. Вукобратович М. Шагающие роботы и антропоморфные механизмы. - М.: Мир, 1976. - 541 с.
11. Вукобратович М., Стокич Д. Управление манипуляционными роботами: теория и приложения. - М.: Наука, 1985. - 384 с.
12. Загревский В.И. Программирование обучающей деятельности спортсменов на основе имитационного моделирования движений человека на ЭВМ: Автореф. докт. дисс. Томск, 1992.
13. Зинковский А.В., Макаров Н.В., Шолуха В.А. Компьютерный анализ адекватных моделей антропоморфных локомоций. - В кн.: Кибернетика и вычислительная техника, 1990, вып. 86б, с. 56-60.
14. Зинковский А.В., Шолуха В.А. Антропоморфные механизмы, моделирование, анализ и синтез движений: Учеб. пос. - Л.: СПбГТУ, 1992, 71 с.
15. Меделевич И.А. Стопа. - В кн.: Клиническая биомеханика. - Л.: Медицина, 1980, с. 82-106.
16. Новожилов И.В., Кручинин П.А., Копылов И.А. и др. Математическое моделирование сгибательно-разгибательных движений нижних конечностей при изменении вертикальной позы человека. - М.: Изд-во механико-математического факультета. 2001. - 52 с.
17. Прилуцкий Б.И., Зациорский В.М. Нахождение усилий мышц человека по заданному движению. - В сб.: Современные проблемы биомеханики. Вып. 7. Нижний Новгород, 1993, с. 81-123.
18. Соколов М.П. Конькобежный спорт. - М.: ФиС, 1955. - 339 c.
19. Третьяков В.П., Штарк М.Б., Шульман Е.И. и др. Принципы построения и функционирования проблемно-ориентированных программных систем автоматизации исследований в экспериментальной биологии на основе микроЭВМ и КАМАК //Автометрия, 1986, № 3, с. 3-22.
20. Уткин В.Л. Биомеханические аспекты спортивной тактики. М., 1984. - 128 с.
21. Фельдман А.Г. Центральные и рефлекторные механизмы управления движениями. - М.: Наука, 1979. - 184 с.
22. Формальский А.М. Перемещение антропоморфных механизмов. - М.: Наука, 1982. - 368 с.
23. Штоф В.А. Моделирование и философия. М.-Л., 1966. - 275 с.
24. ByoungHwa Ahn, Gye-San Lee, Bo-Yeo Kim. A mathematical modeling of the human upper extremity: an application of its model to the simulation of baseball pitching motion // Korean Journal of Sport Science, 1993, Vol. 5, p. 5-81.
25. Capozzo A. A general computing method for the analysis of human locomotion // Journal of Biomechanics, 1975, Vol. 18, p. 307-370.
26. Chow C.K., Jakobson D.H. Studies of human locomotion via optimal programming // Mathematical biosciences, 1971, Vol. 10, p. 239-306.
27. Dul J., Jonson G.E., Shiavi R., Townsend M.A. Muscular synergism - II. A minimum-fatigue criterion for load sharing between synergist muscles // Journal of Biomechanics, 1984b, Vol. 17, p. 675-684.
29. Dul J., Townsend M.A., Shiavi R., Jonson G.E. Muscular synergism - I. On criteria for load sharing between synergist muscles // Journal of Biomechanics, 1984a, Vol. 17, p. 663-673.
30. Dunfield D.L., Read J.F. Determination of reaction rates by using cubic spline interpolation // The Journal of Chemical Physics, 1972, Vol. 57, N 5, p. 2178-2183.
31. Hatze H. Myocybernetic control models of skeletal muscle. - University of south Africa, Muckleneuk, Pretoria, 1981. - 193 p.
32. Hemami H. Modelling, control, and simulation of human movement // CRC Critical Reviews in Biomedical Engineering, 1988, Vol. 13, Issue 1, p. 1-34.
33. Herzog W. Individual muscle force prediction in athletic movements. - PHD Thesis, 1985, The University of Calgary, p. 1-278.
34. Karpus W.J. The spectrum of mathematical modeling and systems simulation. - In: Simulation of systems, ed. L. Dekker, Delft, 1976, pp. 5-13.
35. Kedzior K., Zagrajek T. A biomechanical model of the human musculoskeletal system. - In Human and Mashine Locomotion, ed. A. Morecki and K.J. Waldron. Springer-Verlag Wien New York 1997, p. 125-153.
36. Laughlin T.M.Mc, Dillman C.J., Lardner T.J. Biomechanical analysis with cubic spline functions // Research Quarterly for Exercise and Sport, 1978, Vol. 48, N 3, p. 569-581.
37. Lumb J.R. Computer simulation of biological systems. - Molecular and Cellar Biochemistry, 1987, Vol. 73, p. 91-98.
38. Morecki A. Modeling and simulation and walking robot locomotion. - In Human and Mashine Locomotion, ed. A. Morecki and K.J. Waldron. Springe-Verlag Wien New York 1997, p. 1-79.
39. Schenau Ingen Van G.J., Bakker K.A. Energy cost of speed-skating and efficiency of work against air resistance // Journal of Biomechanics, 1976, Vol. 40, N 4, p. 584-4591.
40. Seyfarth A., Blickhan R., Van Leeuwen J.L. Optimum take-off techniques and muscle design for long jump // The Journal of Experimental Biology, 2000, Vol. 203, p. 741-750.
41. Voronov A.V., Lavrovsky E.K. Muscle force prediction model in speed-skating - International Society of Biomechanics XIV-th Congress, Paris, July 4-8, 1993, p. 1432-1433.
42. Voronov A.V., Lavrovsky E.K., Zatsiorsky V.M. Modelling of rational variants of the speed-skating technique // Journal of Sport Sciences, 1995, Vol. 13, N 2, april 1995, p. 153-170.