Различие достоверно в сравнении с предыдущим: * - р < 0,05; ** - р < 0,02-0,01; ***- р < 0,002-0,001.
Различие достоверно в сравнении с фосфатным: ^ - р < 0,05; ^^ - р < 0,02-0,01; ^^^- р < 0.002-0.001.
К подготовительному периоду под влиянием целенаправленной тренировки 11,4 % от общего числа испытуемых изменили смешанный тип энергетики на аэробный. Количество юношей с фосфатным типом энергетики осталось прежним. Все испытуемые, изменившие структуру энергетики, имели в своей группе исходно более высокие значения: W240, W900 и b.
В соревновательном периоде 5,7 % от общего количества юношей, имевших в пределах своей группы более высокие значения Wmax и W10, изменили смешанный тип энергетики на фосфатный. Количество испытуемых с аэробным типом энергетики от подготовительного к соревновательному периоду не изменилось.
В течение всего годичного цикла наблюдений не было ни одного случая перехода фосфатного типа в аэробный, и наоборот. Таким образом, в процессе годичного тренировочного цикла под воздействием регулярной тренировочной нагрузки лишь в 17,1 % случаев тип энергообеспечения изменился, а в 82,9 % случаев остался прежним. По-видимому, тип энергообеспечения мышечной деятельности является достаточно стабильной структурой, а происходящие под влиянием физической нагрузки адаптивные изменения метаболических параметров мышц неспособны радикально поменять типологию метаболизма.
В переходном периоде тренировки лучшей работоспособностью в зоне умеренной мощности обладают спортсмены аэробного и смешанного типов энергетики. Время удержания нагрузки составило соответственно 3594,25±144,17 и 3669,52±97,44 с. Достоверно меньше (p< 0,01) в сравнении с испытуемыми смешанного типа удерживают нагрузку умеренной мощности представители фосфатного типа - 3156,25±139,7 с.
Таблица 2. Уравнения регрессии для оценки работоспособности (времени - Т работы заданной мощности или времени пробегания дистанции), коэффициента корреляции и достоверности в соревновательном периоде
Время, Т | Уравнение регрессии | r | p |
Умеренной мощности | 932,1827a - 65,26936 | 0,771 | 5,86*10-8 |
52б,92035b - 2080,24359 | 0,772 | 5,53*10-8 | |
1904,97483W240- 3504,82584 | 0,713 | 1,5б*10-6 | |
1663,68167W900-807,71123 | 0,742 | 3,37*10-7 | |
Большой мощности | 544,1219a- 1312,31409 | 0,929 | 9,2б*10-16 |
314,17547b-2564,02928 | 0,95 | 3,4Г10-18 | |
1165,21267W240- 3528,3045 | 0,899 | 2,19*10-13 | |
1002,38448 W900- 1835,04001 | 0,922 | 3,73*10-15 | |
Лыжной гонки на 10 км | 3158,87105-1б3,б0578a | -0,616 | 0,00008 |
3523,6573-93,45329b | -0,623 | 0,00006 | |
3768,52019-335,86766 W240 | -0,572 | 0,00033 | |
3276,21315-287,45209 W900 | -0,584 | 0,00023 | |
Лыжной гонки на 5 км | 1933,651-130,03975a | -0,659 | 0,00002 |
2210,21082-73,10939b | -0,656 | 0,00002 | |
2365,20171-253,40147W240 | -0,581 | 0,00026 | |
2009,46384-222,36682W900 | -0,607 | 0,00011 |
Лучшими рабочими возможностями в зоне большой мощности обладают юноши аэробного типа. Они выдерживают нагрузку в течение 1110,5±132,73 с. Достоверно худшее время (p < 0,05) показывают представители смешанного и фосфатного типов энергообеспечения, соответственно 807,33±40,77 и 434,75±31,62 с.
В подготовительном периоде работоспособность в зоне умеренной интенсивности максималь на у испытуемых аэробного типа энергетики -4702,75±227,44 с. Достоверно худшей работоспо собностью (p < 0,05) при выполнении работы умеренной мощности обладают юноши смешанного - 3858,74±232,58 с и фосфатного - 2694,25±106,26 с типов. Разница между смешанным и фосфатным типами энергетики достоверна - p < 0,001.
В том же периоде подготовки велоэргометри ческую нагрузку большой мощности дольше удерживают спортсмены аэробного типа - 1826±195,81 с. Достоверно (p < 0,001) меньшее время работают испытуемые смешанного и фосфатного типов, соответственно 1019,96±94,19 и 341,75±32,56 с.
Как и в предыдущих периодах тренировки годичного тренировочного цикла, в соревновательном лучшей работоспособностью в зонах умеренной и большой мощности обладают юноши аэробного типа энергетики. Нагрузку умеренной интенсивности они удерживают 5335,75±238,87 с. Юноши смешанного и фосфатного типов удерживают ту же нагрузку, соответственно 3884,81±221,59 и 2299,67±182,75 с. Разница между типами статистически достоверна - p < 0,001.
В этом же периоде работу большой мощности дольше выполняют испытуемые аэробного типа - 1743,25±109,7 с. Достоверно (p < 0,001) хуже справляются с нагрузкой большой мощности юноши смешанного и фосфатного типов - 973,81±109,03 и 266±15,08 с, соответственно.
Общеизвестен факт, что максимально точное представление о работоспособности дает специфическая соревновательная нагрузка. Дистанцию лыжных гонок на 10 км быстрее всех пробегали испытуемые аэробного типа энергетики - 2111,87±43,95 с. На пробегание той же дистанции лыжники смешанного и фосфатного типов затрачива ли достоверно большее время (p < 0,001), соответственно 2522,71±52,87 и 2676±62,92 с.
Дистанцию 5 км спортсмены аэробного типа проходили в среднем за 1129,38±26,58 с. Лыжники смешанного и фосфатного типов - за 1406,46±38,9 и 1588±44,17 с, соответственно. Разница между типами статистически достоверна - p<0,01.
Полученные данные позволяют предположить, что независимо от периода подготовки годичного тренировочного цикла тип индивидуальной организации энергообеспечения скелетных мышц определяет работоспособность лыжников-гонщиков в различных зонах мощности и результаты соревнований.
Не меньший интерес представляет взаимосвязь индивидуальных эргометрических показателей, характеризующих возможности энергосистем, с работоспособностью спортсменов. Было показано [4], что у тренированных мужчин величина Wmax характеризует работоспособность в зоне максимальной мощности, W40 - субмаксимальной, W240 - большой, а W900 -умеренной мощности. Можно предполагать наличие взаимосвязи показателей W240, W900, b и с результатами соревнований.
Для проверки данного предположения был проведен корреляционный анализ. В табл. 2 представлены уравнения регрессии, достоверность и коэффициенты корреляции между показателями a, b, W240, W900 и работоспособностью спортсменов в зонах умеренной и большой мощности, а также результатами лыжных гонок на 5 и 10 км. Видно, что указанные показатели достоверно коррелируют не только с временем удержания нагрузок умеренной и большой мощности, но и с результатами соревнований. Так, например, на рисунке показано, что чем больше величина коэффициента b, характеризующего емкость аэробного источника энергии, тем меньшее время спортсмены затрачивают на прохождение дистанции лыжных гонок на 5 км. Эта взаимосвязь выражается достоверной существенной линейной корреляционной зависимостью и описывается соответствующим уравнением регрессии. Приведенные уравнения показывают возможность их практического использования . Подставляя значения эргометрических показателей в регрессионное уравнение, можно с достаточной степенью достоверности (см. табл. 2), естественно, в изучаемых нами пределах, рассчитать время удержания нагрузки или пробегания дистанции.
Таблица 3. Уравнения множественной регрессии для расчета функциональных показателей и времени (Т) пробегания дистанции в 10 и 5 км в соревновательном периоде годичного тренировочного цикла
Расчетный показатель | Уравнения множественной регрессии | r | r2 | SD |
PWC„/Kr | 6,98b-6,49W900-10,22a+4,29W240-4,06W40-4,29 | 0,698 | 0,487 | 0,912 |
МПК/кг | 55,69a-64,93W900-25,14b+69,45W240+10,76W40-38,64 | 0,845 | 0,12 | 4,577 |
Т,о | 7488,82 + 4668,6W900-615,53b+96,04a-3805,62W240+ 516,48W40 | 0,714 | 0,51 | 214,83 |
Т, | 4086,67+2775,42W900+186,9b-894,93a-2391,7W240+83,93W40 | 0,724 | 0,524 | 157,35 |
Еще более дифференцировать данный подход позволяет составление уравнений множественной регрессии (табл. 3). Поскольку эргометрические показатели, рассчитываемые на основании уравнения Мюллера, не являются привычными для большинства исследователей и специалистов -практиков, которые привыкли опираться на результаты прямого или косвенного измерения МПК и PWC170, мы посчитали необходимым представить возможность расчета и этих показателей по результатам эргометрического тестирования (см. табл. 3). Построение подобных регрессионных зависимостей для любого контингента занимающихся не составляет особого труда и дает возможность уже в подготовительном периоде прогнозировать, какого результата может добиться спортсмен, что позволит вносить соответствующие коррективы в тренировочный процесс.
Таким образом, результаты проведенного исследования указывают на важность учета помимо возраста и пола индивидуально-типологических особенностей скелетных мышц человека при отборе в спортивные школы и при программировании тренировочного процесса.
Список литературы
1. Волков Н.И. Максимум анаэробной производительности у спортсменов // Морфология, физиология и биохимия мышечной деятельности: Тез. докл. VIII научн. конф. М., 1964, с. 42 - 43.
2. Волков Н.И. Энергетический обмен и работоспособность человека в условиях напряженной мышечной деятельности: Автореф. канд. дис. М., 1969. - 51 с.
3. Воробьев В.Ф. Соотношение компонентов энергообеспе чения мышечной работы различной мощности у мальчиков 10-11 лет: Автореф. канд. дис. М., 1991. - 24 с.