А. А. Богатов, Мордовский государственный педагогический институт, Саранск
Считается, что энергия, обеспечивающая сокращения мышц, образуется в процессе расщепления АТФ и существует три основных пути ее ресинтеза, названные источниками энергообеспечения: аэробный (окислительный), анаэробно-гликолитический и фосфагенный [1, 2, 18, 19, 22, 23].
Известно, что преобладание анаэробной или аэробной энергетики у человека определяется составом мышечных волокон и выявляется уже в детском возрасте [8]. Считается, что подобная специфика метаболических реакций генетически детерминирована [13,16]. В зависимости от индивидуальной организации энергетики скелетных мышц выделяют различные типы (варианты, профили) энергообеспечения. Так, Л.А. Марчик и Л.Л. Каталымов [11], изучая особенности энергетики мальчиков 7-8 лет, выявили в этом возрасте 6 типов энергообеспечения. В.Ф. Воробьев [3] определил у мальчиков 10 - 11 лет 4 варианта энергообеспечения мышечной работы. При изучении особенностей энергетической структуры у нетренированных студентов-мужчин 17-18 [12] и 18-22 лет [16] было показано наличие трех энергопрофилей.
Подобное снижение вариативности индивидуальной организации энергетики скелетных мышц может быть связано с онтогенетическими дифференцировками скелетных мышц, основные волны которых приходятся на 1 и 3 года, 5 - 6, 10 - 11 и 14 -16 лет [9].
В настоящее время все больше исследователей, работающих в области физического воспитания, приходят к мнению, что проблема индивидуализации тренировочных режимов не может быть исчерпана учетом только пола и возраста [5]. Одним из возможных условий оптимизации тренировочного процесса может явиться его программирование, базирующееся на основе учета типологических особенностей энергообеспе чения скелетных мышц.
Показано, что у мальчиков, не занимающихся спортом, тип энергообеспечения определяет работоспособность в различных зонах мощности [12]. Можно предположить, что тип энергетики будет обуславливать рабочие возможности спортсменов в специфических условиях тренировки и соревновательной деятельности.
Имеются данные, указывающие, что структура энергетики независимо от методики занятий развивается по специфическому для нее пути [13]. В этом случае определение типа индивидуальной организации энергообеспечения скелетных мышц на учебно-тренировочном этапе занятий в ДЮСШ могло бы позволить прогнозировать результат, которого может добиться спортсмен.
В свете вышесказанного целью нашего исследования было изучение типологических особенностей энергетики скелетных мышц лыжников-гонщиков и их взаимосвязи с работоспособностью в процессе годичного тренировочного цикла.
Методика исследований. В исследовании приняли участие 35 юношей в возрасте 17 - 18 лет, имеющих II - III разряды по лыжным гонкам и занимающиеся в одной учебно-тренировочной группе. Средний рост испытуемых - 174,33±3,74 см, вес - 66,6±7,02 кг. Наблюдения проводились во время переходного (май), подготовительного (октябрь) и соревновательного (февраль) периодов годичного тренировочного цикла.
Для характеристики энергетических систем использовали такие понятия , как мощность и емкость энергетического источника. Мощность определяется активностью тканевых ферментов энергетического метаболизма, а также пропускными возможностями систем транспорта кислорода. Емкость зависит от запаса доступных субстратов и от состояния резервных возможностей вегетативных систем организма [3, 18].
С помощью эргометрического метода тестирования, основанного на оценке коэффициентов уравнения Мюллера [4, 6, 7, 24], испытуемые на велоэргометре Ритм ВЭ-05 выполняли две нагрузки "до отказа" в зоне большой (3 Вт/кг) и субмаксимальной (6 Вт/кг) мощности - W1 и W2, соответственно [15]. За "отказ" от работы принимали прекращение педалирования либо резкое снижение его интенсивнос ти. Время удержания нагрузок (t1 и t2) использовали для расчета коэффициентов "a" и "b":
a = lg (t2 / t1) / lg (W1 / W2);
b = ln (t1 x W1a) = ln (t2 x W2a).
Величина коэффициента "а" характеризует положение ветвей кривой "мощность-время" относительно осей координат и выражает соотношение возможностей аэробного и анаэробно-лакта цидного источников. Коэффициент "b" характери зует аэробную емкость [3, 6].
Исходя из схемы участия основных источников энергии (фосфагенного, лактацидного и аэробного) в энергообеспечении мышечной деятельности в зависимости от ее длительности [2, 23, 25], подставляя значения коэффициентов в уравнение Мюллера t = eb / Wa, рассчитывали мощность нагрузки, которую испытуемый может поддерживать в течение 1, 10, 40, 240 и 900 с (показатели Wmax, W10, W40, W240, W900).
Показатели Wmax и W10 характеризуют мощность фосфагенного компонента энергообеспечения, W40 - гликолитического, W240 - рабочие возможности в зоне смешанной анаэробно-аэробной энергопродукции, а W900 - мощность аэробной энергосистемы [6, 11].
Для определения типа энергообеспечения скелетных мышц рассчитывали среднеарифметические значения мощностных показателей для всей выборки. Отличие величины индивидуального значения показателя на±0,67s от среднего (M) позволило оценить степень развития источников энергообеспечения. Если индивидуальная величина не выходила за пределы M±0,67s, развитие энергоисточника принимали за среднее. Если индивидуальное значение меньше или больше M±0,67s, то говорили, соответственно, о низком или высоком уровне развития источника энергии.
Работоспособность спортсменов оценивали по времени удержания велоэргометрических нагрузок умеренной (1,5 Вт/кг), большой, субмаксимальной мощностей и результатам, показанным на соревнованиях по лыжным гонкам на 10 и 5 км.
Полученные данные математически обработаны на ЭВМ с помощью стандартной программы.
Для определения достоверности различий рассчитывали доверительный коэффициент (t) Стъюдента. На основании величины t и числа наблюдений по таблице [9] определяли процент возможной ошибки, выражаемый в виде значения вероятности различия - p.
Результаты исследования и их обсуждение. На первом этапе исследования (переходный период) был проведен анализ индивидуальных значений эргометрических показателей, характери зующих возможности энергосистем. Выявлено три варианта индивидуальной организации энергообеспечения мышечной деятельности. Полученные данные представлены в табл. 1.
В 11,4 % случаев юноши обладали высокой степенью развития фосфагенного (показатели Wmax, W10), высокой, средней или низкой степенью развития гликолитического (W40) и низкой степенью развития аэробного (минимальные значения b, W240, W900) компонентов энергообеспечения мышечной деятельности. Этих испытуемых выделили в фосфагенный тип энергетики (см. табл. 1). Согласно [13], высокое значение Wmax при данном варианте энергообеспечения отражает не столько уровень мощности фосфагенной системы, сколько тот факт, что ее характеристики являются наиболее консервативными, генетически предопреде ленными и стабильными признаками.
В 77,1% случаев развитие источников энергии было пропорциональным, т.е. каждый из компонентов имел в основном среднюю степень развития энергетических систем. Такой тип энергетики был назван смешанным (пропорциональным).
У 11,4 % испытуемых наблюдали высокую степень развития аэробного, среднюю - анаэробно -гликолитического и низкую - фосфагенного источников энергии (см. табл. 1). Этот тип энергообес печения скелетных мышц назвали аэробным.
Как видно, типы энергетики достоверно отличаются по большинству представленных в табл. 1 показателей.
Как было указано выше, преобладание анаэробной или аэробной энергетики в обеспечении мышечной деятельности человека определяется составом мышечных волокон, генетически детерминируемо [8, 13, 20] и может проявляться уже в детском возрасте [3, 11, 17]. Известно также, что нейромоторные свойства мышц находятся под более жестким контролем генетического аппарата в сравнении с метаболическими характеристиками мышцы, которые способны адаптивно изменяться под воздействием тренировки [13,16]. Однако к настоящему времени невозможно достаточно точно ответить на вопрос: изменяется ли тип энергообес печения скелетных мышц под влиянием тренировки параллельно с адаптивными сдвигами метаболических параметров, поскольку имеются данные [13], указывающие, что структура энергетики независимо от направленности занятий развивается по специфичному для нее пути. В таком случае правомерно предположение [11], что либо тип энергетики скелетных мышц генетически детермини рован, а целенаправленная тренировка расширяет его потенциальные возможности, не изменяя типологии метаболизма, либо генетически обусловлена программа развития энергетических систем.
Таблица 1. Показатели, характеризующие мощность и емкость энергетических источников у лыжников-гонщиков с разными типами энергообеспечения в различные периоды годичного тренировочного цикла (М±т)
Показатели | По всей выборке | Тип энергообеспечения | ||
аэробный | смешанный | фосфатный | ||
Переходный период | ||||
n, % | 35(100) | 4(11,4) | 27(77,1) | 4(11,4) |
a | 4,05±0,07 | 4,53±0,09^^^ | 4,12±0,05*** | 3,16±0,17*** |
b | 11,08±0,13 | 11,96±0,21^^^ | 11,18±0,1*** | 9,54±0,23*** |
Wmax, Вт/кг | 15,66±0,43 | 14,06±0,32^^ | 15,11±0,27* | 20,95±1,68** |
W10, Вт/кг | 8,79±0,12 | 8,45±0,18^ | 8,67±0,11 | 9,99±0,46** |
W40 Вт/кг | 6,21±0,06 | 6,22±0,14 | 6,18±0,07 | 6,4±0,17 |
W240, Вт/кг | 3,97±0,05 | 4,19±0,11^^ | 3,99±0,05 | 3,61±0,06*** |
W900, Вт/кг | 2,86±0,05 | 3,13±0,09^^^ | 2,9±0,04* | 2,37±0,08*** |
Подготовительный период | ||||
п, чел. (в %) | 35(100) | 8 (22.9) | 23 (65.7) | 4(11,4) |
a | 4,32±0,12 | 5,14±0,12^^^ | 4,25±0,11*** | 3,13±0,2*** |
b | 11,62±0,23 | 13,12±0,24^^^ | 11,5±0,2*** | 9,25±0,31*** |
Wmax, Вт/кг | 15,3±0,47 | 12,87±0,2^^ | 15,35±0,42*** | 19,88±1,76* |
W10, Вт/кг | 8,74±0,12 | 8,22±0,07^ | 8,81±0,14*** | 9,34±0,38 |
W40 Вт/кг | 6,25±0,06 | 6,26±0,05^^ | 6,3±0,09 | 5,94±0.08** |
W240, Вт/кг | 4,1±0,07 | 4,41±0,06^^^ | 4,12±0,06** | 3,33±0,08*** |
W900, Вт/кг | 3,01±0,07 | 3,41±0,06^^^ | 3,01±0,06*** | 2,18±0,11*** |
Соревновательный период | ||||
п, чел. (в %) | 35(100) | 8 (22.9) | 21 (60) | 6(17.1) |
а | 4,3±0,18 | 5,51±0,12^^^ | 4,31±0,15*** | 2,65±0,12*** |
b | 11,43±0,32 | 13.5±0,18^^^ | 11,49±0,28*** | 8,49±0,18*** |
Wmax, Вт/кг | 15,94±0,94 | 11,67±0,3^^^ | 14,77±0,44*** | 25,72±2,76*** |
W10, Вт/кг | 8,64±0,19 | 7,66±0,13^^^ | 8,49±0,12*** | 10,49±0,56** |
W40 Вт/кг | 6,07±0,05 | 5.95±0.08 | 6,1±0,06 | 6,15±0,16 |
W240, Вт/кг | 3,91±0,08 | 4.29±0,04^^^ | 4±0.08*** | 3,1±0,06*** |
W900, Вт/кг | 2,86±0,1 | 3,37±0,04^^^ | 2,94±0,08*** | 1,88±0,08*** |
Примечание.