1. Биохимические изменения в скелетных мышцах
КрФ (креатинфосфат) уже к 45 секунде затрачивается до минимума (ок. 5 ммоль.кг-1 сырой ткани).
Концентрация гликогена в мышцах уменьшается примерно на 15-20% на 1-2 минуте физической работы.
Потребление кислорода уже на 2 минуте максимально – до 100%.
Незначительно тратится белок. Увеличивается поступление в мышцы аммиака, свободных аминокислот и пептидов.
2. Биохимические изменения в крови
В крови накапливается продукт распада КрФ – Кр (креатин).
Концентрация продукта распада гликогена – лактата – в крови на 1-2 минуте достигает 20 ммоль.л-1, что приводит к увеличению кислотности и снижению рН.
На 1-2 начинает повышаться количество ионов водорода Н+ примерно до 6.10-7 ммоль. Следовательно, происходит сдвиг кислотно-щелочного равновесия (рН) максимально до 7.0.
Накапливается в плазме крови продукт распада белка – мочевина.
3. Биохимические изменения в головном мозге
Во время работы в головном мозге за счет процессов возбуждения активно используется энергия АТФ. Восстановление АТФ обеспечивается путем окислительного фосфорилирования. Основным источником энергии является глюкоза, поступающая с кровью.
4. Биохимические изменения в миокарде
При работе резко учащается частота сердечных сокращений, что требует усиленного образования АТФ, которая обеспечивается за счет аэробного окисления глюкозы. Энергетическими субстратами при данной работе является глюкоза.
5.Биохимические изменения в моче
В моче может появиться белок, а также увеличивается содержание лактата.
Вышеизложенные изменения представлены на графике сравнительного расходования и восстановления различных энергетических субстратов.
Восстановление после окончания нагрузки
После окончания работы содержание различных метаболитов возвращается к исходному уровню. При этом происходит не только восстановление затраченных энергетических ресурсов, но и их сверхвосстановление.
Прежде всего, восстанавливается содержание КрФ в мышцах. На 90% КрФ восстанавливается за 2-6 минут. А полное восстановление происходит за 0,5 – 4-6 часов. Кр устраняется быстро за 0,5 часа. Суперкомпенсаторная фаза (сверхвосстановление содержания КрФ в мышцах) происходит на 6-8 часу.
Затем восстанавливается гликоген мышц, для которого необходимо достаточное количество глюкозы. Восстановление гликогена мышц происходит за 12-20 часов. Фаза суперкомпенсации длится 24-48 часов. Лактат ликвидируется следующим путем. На 3-4 минуте после окончания работы уровень лактата в крови увеличивается, так как происходит его выход из работавших мышц. Затем начинается его устранений различными путями. 60% лактата окисляется до СО2 и Н2О. 20% превращается в пировиноградную кислоту, а затем в гликоген печени – происходит процесс глюконеогенез. Некоторая часть выделяется с потом и мочой. Полная нормализация лактата происходит за 0,5-3 часа. При перегрузке это время увеличивается.
Примерно за 0,5-1 час идет нормализация кислотно-щелочного равновесия (рН).
Процесс восстановления белка начинается сразу после нагрузки и ускоряется к 3-4 часу. Продолжается этот процесс около 2-3 суток, фаза суперкомпенсации – 3-4 сутки. Мочевина устраняется из крови примерно за 12-24 часа, причем сразу после окончания работы уровень мочевины в крови повышен.
Динамика биохимических изменений при работе и в период отдыха в большей степени зависит от активности эндокринной системы.
Содержание в плазме кортизола около 5 мг.дл-1.
Свободные жирные кислоты – около 4 ммоль.л-1.
Содержание адреналина и норадреналина слегка увеличивается.
4. Направленность изменений, развивающихся при адаптации организма к нагрузкам данного типа. Биохимические изменения, обуславливающие рост спортивных результатов. Методы оценки ведущих энергетических критериев. Качества двигательной деятельности, которые являются основными при выполнении заданной нагрузки и биохимическое обоснование методов их развития
При адаптации к физическим нагрузкам происходят определенные изменения в работающих мышцах и в организме в целом. Можно выделить следующие основные направления развития адаптационных изменений:
1. Увеличение энергетических ресурсов (КрФ, гликоген мышц).
При данной работе в основном тратится гликоген из быстрых мышечных волокон. При адаптации к такой работе произойдет увеличение запасов гликогена примерно на 50-70% от исходного уровня. Так как в начале работы тратится КрФ, то при адаптации произойдет увеличение содержания КрФ в мышцах примерно на 58%. Также тратится белок, значит, при адаптации увеличится количество сократительных белков:
- в саркоплазматическом ретикулуме на 54 %;
- в саркоплазме на 57%;
- в миофибриллах на 63%.
Толщина мышечных волокон увеличивается при постоянных тренировках примерно на 24%. Относительная масса мышц увеличивается на 32%.
2. Увеличение количества и активности ферментов, которые ускоряют реакции энергетического обмена
Количество и активность аденозинтрифосфатазы миозина увеличивается на 18%. Также увеличивается активность фосфорилазы и фосфофруктокиназы примерно на 30%.
3. Повышение эффективности энергетических процессов (повышение сопряженности окисления и фосфорилирования, увеличение доли аэробных процессов). (см. методические рекомендации, рис. 21)
Скорость основного энергетического процесса при данной работе – гликолиза – возрастает на 56%. Увеличивается мощность данного процесса: возрастает скорость накопления молочной кислоты, а также скорость избыточного выделения СО2 (~ 35 мл.кг-1). Однако в процессе многолетней тренировки, скорость избыточного выделения СО2 может уменьшаться.
Увеличивается емкость гликолиза: повышается максимальное накопление молочной кислоты в крови (~32 ммоль.л-1) , максимальная величина кислородного долга (~50 мл.кг-1), а также максимальный сдвиг рН крови.
Максимальное потребление кислорода при данной нагрузке ~ 77 мл.кг-1.мин-1. Максимальная анаэробная мощность – 1.8 м.с-1. Максимальный приход кислорода – 1.3 л.кг-1.
Таким образом, создаются предпосылки для увеличения мощности и емкости лактатного компонента выносливости, для развития скоростно-силовых качеств гликолиза. Повышается аэробная выносливость: вклад аэробных процессов идет быстрее и эффективнее.
4. Совершенствование процессов вегетативной регуляции, что приводит к быстрой мобилизации энергетических ресурсов.
5. Увеличение возможностей поддержания постоянства рН (буферной емкости организма и устойчивости к накоплению продуктов распада – лактата).
6. Увеличение структурных белков. Возрастает число митохондрий на единицу площади примерно на 30%. Содержание миоглобина повышается на 58%. Количество миостроминов увеличивается на 7-10%.
Изменения, происходящие в организме при систематических тренировках при адаптации к физическим нагрузкам, повышают возможности энергетических систем, что проявляется в изменении выраженности различных реакций на физическую нагрузку.
Методы, используемые для определения тех биоэнергетических характеристик, которые играют ведущую роль при выполнении данной соревновательной нагрузки:
Педагогические – нужно давать специфическую нагрузку и ориентироваться по времени.
Биохимические:
- величина лактатного кислородного долга;
- максимальное увеличение лактата после специфической нагрузки (1 мин – бег на 400м, 1 мин – отдых, и так 4 раза);
- максимальный сдвиг рН.
У более тренированного спортсмена максимальное накопление лактата будет выше. А увеличение показателя рН наоборот свидетельствует о недостаточной тренированности спортсмена.
Исходя из всего вышесказанного, для достижения высоких спортивных показателей при выполнении данной нагрузки, необходимо развивать такие ведущие качества двигательной деятельности, как скоростно-силовые качества и аэробную выносливость.
Словарь используемых терминов
1. АТФ – (аденозинтрифосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех последовательно соединенных остатков фосфорной кислоты. АТФ содержится в каждой клетке в цитоплазме, митохондриях, ядрах и снабжает энергией большинство процессов, происходящих в клетке.
2. АДФ – (аденозиндифосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и двух последовательно соединенных остатков фосфорной кислоты. Принимает участие в синтезе АТФ.
3. АМФ – (аденозинмонофосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и одного остатка фосфорной кислоты.
4. Адаптация – приспособление организма к действию физических нагрузок, вызываемое биохимическими изменениями в организме.
5. Активная реакция среды – (рН) кислотно-щелочное равновесие – определенное соотношение кислот и оснований. Она достаточно постоянна в крови и составляет 7,4.
6. Актин – глобулярный белок, скрученный в две нити спиралью, составляющий тонкую нить миофибрилла.
7. Алкалоз – повышение рН, повышение щелочной реакции среды.
8. Ацидоз – понижение рН, повышение кислой реакции среды.
9. АТФ-аза – (аденозинтрифосфатаза)фермент, катализирующий отщепление от аденозинтрифосфорной кислоты одного или двух остатков фосфорной кислоты с освобождением энергии, используемой в процессах мышечного сокращения.
10. Аэробное окисление углеводов – катаболизм, процесс, идущий во всех органах и тканях, заканчивающийся полным окислением глюкозы до углекислого газа и воды.