Смекни!
smekni.com

Биохимические изменения в организме при выполнении соревновательных нагрузок (легкая атлетика, 800 м – 2 мин.) (стр. 1 из 3)

Федеральное Агентство по Образованию

Южно-Уральский Государственный Университет

Факультет Физической Культуры и Спорта

Кафедра Физической и Психической Реабилитации

КУРСОВАЯ РАБОТА

По предмету: Биохимия

На тему: Биохимические изменения в организме при выполнении соревновательных нагрузок (легкая атлетика, 800м – 2 мин.)

Выполнил: студентка группы №339

Лонская Н.С.

Введение

Изменения биохимических процессов в организме при мышечной деятельности зависят от мощности и продолжительности упражнения, а также от тренированности спортсмена. Между мощностью работы и ее продолжительностью существует обратная зависимость – чем больше мощность работы, тем меньше время, которое можно ее выполнять. В предложенной задаче работа выполняется тренированным спортсменом в условиях соревнований, т.е. при максимальном физическом напряжении. Следовательно, основным критерием, от которого зависит характер биохимических сдвигов, является продолжительность работы. Хотя в каждом циклическом виде спорта имеются определенные особенности работы, тем не менее, на основе продолжительности работы можно судить о зоне мощности, в которой она выполняется, и о соотношении различных энергетических процессов. Зная относительное участие энергетических процессов при данной нагрузке, можно составить представление об изменениях обмена веществ во время работы и в период отдыха после нее.

Цель курсовой работы: научиться оценивать направленность энергетических процессов и характер биохимических изменений в организме при выполнении физических нагрузок в избранном виде физкультурно-спортивной деятельности.

Задачи:

1. Дать биохимическую характеристику данной физической нагрузке. Зона мощности, в которой выполняется данная работа. Соотношение аэробных и анаэробных процессов энергообеспечения, ведущие энергетические системы.

2. Дать развернутую характеристику основной энергетической системы. Указать энергетические субстраты, описать их превращения при выполнении нагрузки, механизм образования АТФ. Характеристика основного энергетического процесса (мощность, емкость и эффективность).

3. Описать биохимические изменения в организме при выполнении данной физической нагрузки, а также в период отдыха. Изменения обмена углеводов, липидов, белков в мышцах, во внутренних органах, изменения содержания различных метаболитов в крови. Указать последовательность восстановления разных энергетических систем. Составить график, характеризующий эти биохимические изменения.

4. Описать направленность изменений, развивающихся при адаптации организма к нагрузкам данного типа. Биохимические изменения, обуславливающие рост спортивных результатов. Методы оценки ведущих энергетических критериев. Качества двигательной деятельности, которые являются основными при выполнении заданной нагрузки и биохимическое обоснование методов их развития.


1. Дать биохимическую характеристику данной физической нагрузке.Зона мощности, в которой выполняется данная работа. Соотношение аэробных и анаэробных процессов энергообеспечения, и ведущие энергетические системы

Механизмы энергообразования при выполнении работы существенно различаются в зависимости от ее интенсивности и продолжительности. Данную тренировочную нагрузку – бег на 800 м. в течение 2 минут можно отнести к зоне субмаксимальной мощности.

Выполняемая работа преимущественно анаэробного характера – 70%, и только 30% - вклад аэробного механизма энергообеспечения. До 30 секунд идет анаэробный алактатный путь – креатинфосфокиназная система энергообеспечения. На 1-2 минутах достигает своего максимума анаэробный лактатный механизм – гликолиз, который и является ведущей системой энергообеспечения данной нагрузки. Аэробный путь ресинтеза АТФ при данной нагрузке задействован незначительно. (см. Методические указания рис. 2,3)

2. Характеристика основной энергетической системы, обеспечивающей работу. Энергетические субстраты, описание процесса, конечные продукты. Механизм образования АТФ. Факторы, влияющие на физическую работоспособность при данной работе (спортивный результат).

Основная энергетическая система, обеспечивающая работу – анаэробно-гликолитическая. В основе этого пути энергообеспечения лежит процесс гликолиза. Гликолиз – это сложный ферментативный процесс последовательных превращений углеводов (гликогена мышц и глюкозы) протекающий в саркоплазме мышечного волокна без потребления кислорода и сопровождающийся накоплением молочной кислоты. Следовательно, энергетические субстраты гликолиза, необходимые для образования АТФ – гликоген мышц и частично глюкоза, поступающая в мышцы с кровью. Конечный продукт гликолиза – молочная кислота, которая накапливается в мышцах с большой скоростью, поступает в кровь и вызывает выраженное снижение рН. Процесс гликолиза можно разделить на три стадии:

1. Подготовительная стадия. Происходит активация углеводов и образование субстрата биологического окисления.

2. Биологическое окисление и образование первичных макроэргических соединений.

3. Восстановление пирувата с образованием лактата.

Пусковыми ферментами гликолиза являются фосфорилаза и гексокиназа, расщепляющие соответственно гликоген и глюкозу. Активность этих ферментов зависит от содержания в саркоплазме АДФ и неорганического фосфора, ионов Са2, освобождающихся при мышечном сокращении, и концентрации катехоламинов в крови.

Первая стадия начинается с реакции фосфоролиза гликогена или с активации глюкозы при помощи АТФ с участием гексокиназы. В том и другом случае образуется глюкозо-6-фосфат, который превращается во фруктозо-6-фосфат. Это соединение активируется при помощи АТФ и фермента фосфофруктокиназы, и образуется фруктозо-1,6-дифосфат. Под действием фермента альдолазы это соединение распадается на 2 молекулы фосфоглицеринового альдегида.

На 2-й стадии протекает окисление 3-фосфоглицеринового альдегида с участием НАД-дегидрогеназы и фосфорной кислоты. При этом образуется 1,3-дифосфоглицерат – макроэргическое соединение. Далее происходит перефосфорилирование этого соединения с АДФ и образование АТФ путем субстратного фосфорилирования. В следующей реакции остаток фосфата из положения 3 переносится в положение 2, а затем происходит дегидратация 2-фосфоглицерата. Это приводит к образованию фосфоэнолпирувата с макроэргической связью, появление которой обусловлено электронной перестройкой молекулы. Затем вновь происходит реакция субстратного фосфорилирования – перенос макроэргического остатка с фосфоэнолпирувата на АДФ. Образуется еще одна молекула АТФ и пируват (пировиноградная кислота).

На заключительной 3 стадии гликолиза водород, отнятый НАД-дегидрогеназой от 3-фосфоглицеринового альдегида переносится от НАД∙Н2 на пируват, который при этом превращается в лактат (молочную кислоту) при участии фермента лактатдегидрогеназа. Кофермент НАД освобождается таким образом от протонов и электронов водорода и может участвовать в окислении новых молекул 3-фосфоглицеринового альдегида.

Биологическая роль гликолиза заключается в образовании промежуточных макроэргических соединений: дифосфоглицериновой и фосфоэнолпировиноградной кислот. Под действием ферментов эти соединения отдают свои высокоэнергетические фосфатные группировки на АДФ и образуется АТФ.

ФГК ~ Ф + АДФ фосфоглицераткиназа АТФ + ФГК

дифосфоглицериновая фосфоглицериновая

кислота кислота

ЭПВК ~ Ф + АДФ пируваткиназа АТФ + ПВК

фосфоэнолпировиноградная пировиноградная кислота

кислота

Наивысшей скорости гликолиз достигает уже на 30 секунде и обеспечивает поддержание максимальной мощности упражнения в интервале от 30 до 90 секунд. Однако довольно быстрое исчерпание запасов гликогена мышц и резкое повышение концентрации молочной кислоты, образующейся в результате гликолиза, приводит к снижению активности ключевых ферментов и внутриклеточного рН, что приводит к падению скорости гликолиза и подключению аэробных процессов (дыхания).

Мощность процесса менее 750 кал/кг/мин. Мощность зависит в основном от скорости процесса и регулируется активностью ферментов фосфорилазы и фосфофруктокиназы. Мощность достигает максимума с 20-30 секунды, держится 1-2 минуты и постепенно снижается при поступлении кислорода в мышцы, а также при снижении рН.

Емкость процесса около 2-3 минут. Емкость зависит от запасов гликогена в мышцах, от возможностей буферных систем и от устойчивости ферментов к накоплению лактата.

Эффективность низкая – 30-40%, т.к. углеводы расщепляются только до лактата и большое количество энергии расходуется в виде тепла.

Лимитирующим ферментом гликолиза является фосфофруктокиназа. Увеличение активности этого фермента в 5 раз увеличивает валовый поток гликолиза в 1000 раз. Также значительно влияют на процесс гликолиза фермент фосфорилаза, накопление лактата, емкость буферных систем и запасы гликогена в мышцах.

В спорте гликолитическая система энергообеспечения является основной при выполнении физических нагрузок продолжительностью от 30 секунд до 2,5 минут (в данной случае бег на 800м. – 2 минуты) с предельной для этой продолжительности интенсивностью и составляет основу скоростной выносливости. А также обеспечивает возможность ускорения по ходу дистанции и на финише.

3. Биохимические изменения в организме при выполнении данной физической нагрузки, а также в период отдыха. Изменения обмена углеводов, липидов, белков в мышцах, во внутренних органах, изменения содержания различных метаболитов в крови

Биохимические изменения в организме при физической работе в основном обусловлены тем, какие механизмы принимают участие в ее энергообеспечении. Данная работа – бег на 800 м. в течение 2 минут – выполняется в зоне субмаксимальной мощности. Значит ведущий механизм энергообеспечения – гликолиз. В начале также происходит небольшой вклад анаэробного алактатного механизма.