Смекни!
smekni.com

Биохимические основы двигательных качеств спортсмена (стр. 1 из 3)

Реферат

по биохимии

на тему:

"Биохимические основы двигательных качеств спортсмена"

2009


К двигательным качествам обычно относят силу, быстроту, выносливость, координацию, гибкость, прыгучесть и т.п. Высокое развитие двигательных возможностей является непременным условием успешной технической и тактической подготовки, наличия морально-волевых качеств у спортсменов.

Рассмотрим те качества двигательной деятельности, в развитии которых существенная роль принадлежит биохимическим механизмам. К таким двигательным качествам в первую очередь относятся сила, быстрота и выносливость. Поскольку в структурно-морфологических и биоэнергетических основах силы и быстроты много общего, их обычно объединяют в скоростно-силовые качества.

Биохимические основы скоростно-силовых качеств

Быстроту можно определить как комплекс функциональных свойств организма, непосредственно и преимущественно определяющих время двигательного действия. При оценке проявления быстроты учитывается скрытое время двигательной реакции, скорость одиночного мышечного сокращения, частота мышечных сокращений.

Под силой мышц обычно понимается способность преодолевать внешнее сопротивление, либо противодействовать ему посредством мышечных напряжений.

Скоростно-силовые качества главным образом зависят от энергообеспечения работающих мышц и от их структурно-морфологических особенностей, в значительной мере предопределенных генетически.

Проявление силы и быстроты характерно для физических нагрузок, выполняемых в зоне максимальной и субмаксимальной мощности. Следовательно, в энергообеспечении скоростно-силовых качеств преимущественно участвуют анаэробные пути ресинтеза АТФ – креатин-фосфатный и гликолитический.

Быстрее всего развертывается ресинтез АТФ за счет креатинфосфатной реакции. Она достигает своего максимума уже через 1–2 с после начала работы. Максимальная мощность этого способа образования АТФ превышает скорость гликолитического и аэробного путей синтеза АТФ в 1,5 и 3 раза соответственно. Именно за счет креатинфосфатного пути ресинтеза АТФ мышечные нагрузки выполняются с самой большой силой и скоростью. В свою очередь, величина максимальной скорости креатинфосфатной реакции зависит от содержания в мышечных клетках креатинфосфата и активности фермента креатинкиназы.

Увеличить запасы креатинфосфата и активность креатинкиназы возможно за счет использования физических упражнений, приводящих к быстрому исчерпанию в мышцах креатинфосфата.

Для этой цели используются кратковременные упражнения, выполняемые с предельной мощностью.

Хороший эффект дает применение интервального метода тренировки, состоящей из серий таких упражнений. Спортсмену предлагается серия из 4–5 упражнений максимальной мощности продолжительностью 8–10 с. Отдых между упражнениями в каждой серии равен 20–30 с. Продолжительность отдыха между сериями составляет 5–6 мин.

При выполнении каждого упражнения в мышцах происходит снижение запасов креатинфосфата. Во время отдыха между упражнениями в мышцах включается гликолитический путь ресинтеза АТФ. Но поскольку в этот промежуток времени мышцы не функционируют, то образующиеся молекулы АТФ используются для частичного восстановления запасов креатинфосфата. Достаточно продолжительное время отдыха между сериями позволяет почти полностью восполнить содержание креатинфосфата. Однако суперкомпенсация не развивается, так как отдых сменяется новой серией упражнений.

В результате этого в мышцах постепенно происходит исчерпание запасов креатинфосфата. Как только будет достигнута критическая величина снижения концентрации креатинфосфата в работающих мышцах, сразу же уменьшится мощность выполняемых нагрузок. Обычно такое состояние достигается после 8–10 серий упражнений.

Во время отдыха после тренировки наблюдается выраженная суперкомпенсация креатинфосфата. Поэтому многократное применение таких тренировок должно привести к повышению в мышцах запасов креатинфосфата, активности креатинкиназы и положительно сказаться на развитии скоростно-силовых качеств спортсмена.

Выполнение скоростных и силовых нагрузок в зоне субмаксимальной мощности обеспечивается энергией в основном за счет гликолитического ресинтеза АТФ. Возможности этого способа получения АТФ обусловлены внутримышечными запасами гликогена, активностью ферментов, участвующих в этом процессе, и резистентностью организма к молочной кислоте, образующейся из гликогена.

Поэтому для развития скоростно-силовых способностей, базирующихся на гликолитическом энергообеспечении, применяются тренировки, отвечающие следующим требованиям.

Во-первых, тренировка должна приводить к резкому снижению содержания гликогена в мышцах с последующей его суперкомпенсацией.

Во-вторых, во время тренировки в мышцах и в крови должна накапливаться молочная кислота для последующего развития резистентности к ней организма.

Для этой цели могут быть использованы методы повторной и интервальной работы. Применяемые упражнения должны вызывать повышение скорости гликолитического пути ресинтеза АТФ и приводить к усиленному образованию и накоплению лактата в работающих мышцах и его выходу в кровяное русло. Таким условиям соответствует выполнение предельных нагрузок продолжительностью в несколько минут. В случае интервальной тренировки можно использовать серии из 4–5 таких упражнений. Отдых между упражнениями внутри серии – несколько минут. Хороший эффект дает постепенное уменьшение времени отдыха – например, с 3 до 1 мин. Каждое такое упражнение вызывает распад внутримышечного гликогена и образование молочной кислоты. Короткие промежутки отдыха между упражнениями недостаточны для устранения лактата. Отдых между сериями упражнений, составляющий 15–20 мин, также недостаточен для полного устранения лактата, и поэтому упражнения в каждой последующей серии выполняются на фоне повышенной концентрации в мышцах молочной кислоты, что способствует формированию резистентности организма к повышенной кислотности.

Промежутки отдыха как между отдельными упражнениями, так и между сериями упражнений явно недостаточны для восстановления запасов гликогена, и вследствие этого в ходе тренировки в мышцах происходит постепенное уменьшение содержания гликогена до очень низких величин, что является обязательным условием возникновения выраженной суперкомпенсации.

Структурно-морфологические особенности мышц, определяющие возможности проявления силы и быстроты, касаются строения как отдельных мышечных волокон, так и мышцы в целом. Скоростно-силовые качества отдельного мышечного волокна зависят от количества сократительных элементов – миофибрилл – и от развития саркоплазматической сети, содержащей ионы кальция. Саркоплазматическая сеть также участвует в проведении нервного импульса внутри мышечной клетки.

Содержание миофибрилл и развитие саркоплазматической сети неодинаково в мышечных волокнах разных типов.

В зависимости от преобладания тех или иных способов образования АТФ, химического состава и микроскопического строения выделяют три основных типа мышечных волокон: тонические, фазические и переходные. Эти типы волокон также различаются по своей возбудимости, времени, скорости и силе сокращения, продолжительности функционирования.

Тонические волокна содержат относительно большое количество митохондрий, в них много миоглобина, но мало сократительных элементов – миофибрилл. Основной механизм ресинтеза АТФ в таких мышечных волокнах – аэробный. Поэтому они сокращаются медленно, развивают небольшую мощность, но зато могут сокращаться длительное время.

Фазические волокна имеют много миофибрилл, хорошо развитую саркоплазматическую сеть, к ним подходит много нервных окончаний. В них хорошо развиты коллагеновые волокна, что способствует их быстрому расслаблению. В их саркоплазме значительны концентрации креатинфосфата и гликогена, высока активность креатинкиназы и ферментов гликолиза. Относительное количество митохондрий в белых волокнах значительно меньше, содержание миоглобина в них низкое, поэтому они имеют бледную окраску. Обеспечение энергией белых мышечных волокон осуществляется за счет креатинфосфатной реакции и гликолиза. Сочетание анаэробных путей ресинтеза АТФ с большим количеством миофибрилл позволяет волокнам данного типа развивать высокую скорость и силу сокращения. Однако вследствие быстрого исчерпания запасов креатинфосфата и гликогена время работы этих волокон ограничено.

Переходные мышечные волокна по своему строению и свойствам занимают промежуточное положение между тоническими и фазическими.

Даже из такого краткого перечисления различий между типами мышечных волокон следует, что для проявления силы и быстроты более предпочтительны белые волокна и близкие к ним по строению переходные волокна. Поэтому более выраженными скоростно-силовыми качествами, при прочих равных условиях, обладают те мышцы, в которых соотношение между мышечными волокнами смещено в сторону белых.

Соотношение между волокнами разных типов в скелетных мышцах неодинаковое. Так, мышцы предплечья, двуглавая мышца плеча, мышцы головы и другие содержат преимущественно физические волокна. Мышцы туловища, прямая мышца живота, прямая мышца бедра в основном содержат тонические волокна. Отсюда легко понять, почему указанные группы мышц существенно различаются по таким свойствам, как возбудимость, быстрота, сила, выносливость.

Соотношение между различными типами мышечных клеток у каждого человека генетически предопределено. Однако, используя физические нагрузки определенного характера, можно целенаправленно вызывать изменение спектра мышечных волокон. За счет применения силовых упражнений происходит смещение этого спектра в сторону преобладания белых волокон, имеющих больший диаметр по сравнению с красными и переходными, что в итоге приводит к гипертрофии тренируемых мышц. Основной причиной гипертрофии в этом случае является увеличение содержания в мышечных клетках сократительных элементов – миофибрилл. Поэтому мышечная гипертрофия, вызываемая силовыми нагрузками, относится к миофибриллярному типу.