Менш інтенсивним, теж анаеробним процесом ресинтеза АТФ є гліколіз, що забезпечує високу потужність. Гліколіз забезпечує так звану анаеробну місткість руху. Нарешті, в основі існування організму лежить процес аероба (окислювальний) ресинтез АТФ.
Максимальне споживання кисню як показник продуктивності аероба і чинники, його визначаючі
Споживання кисню м'язами зростає з активізацією їх діяльності, наприклад із збільшенням швидкості бігу. У кожної людини є своя межа споживання кисню при напруженій м'язовій діяльності - максимальне споживання кисню.
МПК є показником продуктивності аероба, бо визначає максимальну інтенсивність реакцій аеробів в організмі.
У свою чергу, МПК залежить від максимальних можливостей дихання, кровообігу і системи крові, забезпечуючих доставку кисню тканинам. Тому МПК також служить найважливішим показником функціонального стану цих систем.
МПК високотренованих спортсменів, виступаючих на довгих дистанціях, складає 5-6 л/міни, а у нетренованих людей коливається в межах 2,5 - 3,5 л/мін. При порівнянні МПК різних спортсменів потрібно враховувати їх вагу. Так, не можна порівнювати два лижники вагою 60 - 80 кг, якщо МПК їх однаково, наприклад 5,5 л/мін. Важчий спортсмен розвиває на дистанції велику потужність і відповідно споживає більше кисню. Тому правильніше розраховувати МПК в питомих одиницях ваги тіла - в мл/мин/кг. Так, для лижника, 60 кг, що важить, МПК, рівне 5,5 л/мін (5500 мл/мин) : 60 кг = 91,7 мл/мин/кг, буде високим, а для 80 кг, що важить, - помірним: 5500 мл/мин : 80 кг = 69,8 мл/мин/кг.
У спокої, сидячи, людина споживає 0,25 - 0,30 л кисню в 1 мін. Звідси витікає, що спортсмени при фізичному навантаженні можуть збільшити споживання кисню в 20 разів в порівнянні із спокоєм (6 л/міни : 0,3 л/мін = 20), а неспортсмени - тільки в 10 разів.
Щоб зрозуміти, від чого залежить величина МПК в організмі, потрібно зіставити максимальні можливості дихання, кровообігу і системи крові, доставляючих кисень з атмосфери до працюючих м'язів.
Система дихання
При м'язовій роботі глибина дихання може досягати 2-3 л, а частота - 60-90 дихальних рухів в 1 мін. Почастішання дихання більше 40-50 разів в 1 мін приводить до зниження його глибини. При глибині дихання 3 л. спортсмен може забезпечити легеневу вентиляцію до 100 - 120 л/мін. Подальше зростання легеневої вентиляції можливе лише при збільшенні частоти дихання.
У момент досягнення МПК (5,5-6 л/мін) легенева вентиляція складає 140-160 л/міни і більш при частоті 60 дихань в 1 мін.
Це приблизно в 20 разів більше, ніж у спокої. Дані вимірювань максимальної довільної легеневої вентиляції у спокої говорять про те, що у спортсменів вона може бути ще більшою - доходити до 200 - 250 л в 1 мін. Звідси зрозуміло, що зовнішнє дихання не обмежує МПК людину. Збільшення легеневої вентиляції понад необхідне не приводить до збільшення споживання кисню тому, що кисень легенів вже не може засвоюватися кров'ю в більшій кількості.
Система кровообігу
Показником інтенсивності кровотоку в організмі служить хвилинний об'єм крові. У спокої він складає 4000 -5000 мл/мин (4 - 5 л/міни).
Об'єм систоли крові у спокої рівний 60-80 мл. Під час роботи він збільшується залежно від місткості шлуночків і розвитку їх мускулатури. Максимальний об'єм систоли крові у спортсменів може досягати 180-200 мл. Проте при ЧСС, яка спостерігається у момент досягнення МПК (180-190 уд/мин), об'єм систоли менше - не перевищує 170 мл.
Почастішання серцебиття понад 200 уд/мин вже не приводить до збільшення хвилинного об'єму крові, тому що об'єм систоли при цьому знижується ще більше.
Таким чином, хвилинний об'єм крові тренованих людей складає 30-35 л (наприклад, 170 * 200 уд/мин = 34000 мл/мин), що в 7-8 разів перевищує рівень спокою. Якщо порівняти це з більш ніж 20 -кратним збільшенням зовнішнього дихання, то стане ясно, наскільки відносно менше резерви кровообігу. Саме хвилинний об'єм крові, визначуваний в основному працездатністю серця, в першу чергу лімітує споживання кисню організмом.
Максимальний об'єм крові досягається лише при виконанні таких вправ, які створюють сприятливі умови для кровообігу, а саме при динамічній циклічній роботі більшості скелетних м'язів. М'язи, що при цьому скорочуються, допомагають серцю в просуванні крові, забезпечуючи задоволення кисневого запиту.
Грудна клітка при неутрудненому диханні виконує функцію “дихального насоса”, допомагаючи поверненню венозної крові до серця з великого круга кровообігу.
Чинники, сприяючі діяльності серця, особливо м'язовий насос, забезпечують вищу продуктивність аероба при роботі лижника і плавця по порівнянню, наприклад, з велосипедистом, у якого під час педалювання працюють набагато менше м'язи при недостатньо вільному диханні. При роботі на велоергометрі за допомогою рук і ніг спортсмени споживають більше кисню і підтримують вищу потужність, ніж при роботі з допомогою тільки ніг.
Отже, за всіх сприятливих умов хвилинний об'єм крові може максимально перевищити рівень спокою лише в 7-8 разів. Яким же чином досягається 20 кратне збільшення доставки кисню до тканин? Зрозуміти це можна, якщо врахувати особливості перенесення кисню кров'ю.
Система крові
Кров, що багата еритроцитами і містить багато гемоглобіну, володіє більшою кисневою місткістю. Киснева місткість крові вимірюється найбільшим об'ємом кисню, що знаходиться в ній. У 100 мл артеріальній крові, що містить 14-15% гемоглобіну, є 18-20 мл кисню. При м'язовій діяльності вміст гемоглобіну в крові може підвищиться на 10 % у зв'язку з виходом в кровоносне русло депонуючої крові, в якій міститься більше еритроцитів і гемоглобін. За рахунок підвищення змісту гемоглобіну киснева місткість кожних 100 мл крові може досягти 21 мл.
Але киснева місткість ще не характеризує об'єму кисню, що віддається артеріальною кров'ю тканинам, бо кисень ніколи не віддається гемоглобіном повністю. У венозній крові ще залишається значна кількість кисню. У спокої воно складає приблизно 13-14 мл на кожну 100 мл кров, а при роботі може знижується до 5-6 мл. Знаючи вміст кисню в артеріальній і венозній крові, можна розрахувати об'єм кисню. що віддається кожними 100 мл кров в капілярах тканин, тобто знайти артерио-венозну різницю по кисню. У спокої артеріовенозна різниця складає близько 6 мл, а при роботі може досягати 15-16 мл на кожну 100 мл кров, що перевищує її рівень у спокої приблизно в 2,5 рази. Значить, при роботі кожна порція артеріальної крові віддає тканинам в 2,5 рази більше кисню, ніж у спокої.
Повніше використовування кисню крові працюючими м'язами забезпечує можливість 20 кратного збільшення одержуваного ними кисню. не дивлячись на те, що кровообіг в цей час зростає лише в 7-8 разів в порівнянні із спокоєм. Чим же викликане підвищене використовування кисню крові при м'язовій діяльності?
Перехід кисню з крові в тканині залежить від розчіплення оксигемоглобіну. Розпад оксигемоглобіну швидшає з підвищенням температури і із зрушенням хімічної реакції крові в кислу сторону. У момент досягнення МПК обидва ці чинника достатньо посилені. Що і забезпечує найбільше використовування кисню. Організм тренувального спортсмена пристосований до великих температурних і біохімічних змін, тому у таких спортсменів спостерігається і вище засвоєння кисню крові тканинами. Ніж більше м'язів бере участь в роботі, тим більша частина артеріальної крові віддає їм свій кисень. У результаті відбувається помітне зниження змісту кисню у венозній крові. Тому участь в роботі багатьох м'язів сприяє збільшенню артерио-венозної різниці.
Максимальний кисневий борг і анаеробна продуктивність
Одним з показників анаеробної енергоосвіти служить кисневий борг.
При погашенні кисневого боргу продовжується підвищене (в порівнянні із спокоєм) окислювальне утворення енергії, що витрачається на ресинтез анаеробний з'єднань, що розпалися. При цьому приблизно 1/5 частина молочної кислоти, що накопичилася, окислюється з освітою С2О і Н2О, а 4/5 її частині використовується як матеріал для відновлення вуглеводів.
Анаеробна продуктивність характеризується потужністю анаеробних процесів і їх місткістю, тобто загальною кількістю енергії, яка може бути виділене за рахунок анаеробної енергоосвіти.
Потужність анаеробних процесів, або їх швидкість, має переважне значення на спринтерських дистанціях і визначається запасами в м'язах речовин (креатинфосфату, глікогену), що енергомістять, здібних до швидкого розпаду без участі кисню. Потужність анаеробних процесів залежить також і від активності ферментів, прискорюючих розпад енергомістять речовини. Вміст креатинфосфату і глікогену в м'язах тренованих спринтерів підвищений.
На середніх і довгих дистанціях більш важлива анаеробна місткість. Тривалість роботи на цих дистанціях до певної міри лімітована тим, що наростаюча концентрація молочної кислоти зсовує в кислу сторону хімічну реакцію крові. Ці зміни можуть в першу чергу негативно позначитися на роботі вищих відділів головного мозку, що приводить до зниження потужності роботи або до її повного припинення. У кожної людини є своя межа змін хімічної реакції крові. Так, зниження Н з 7,36 до 7,1 відносять до значних зрушень. За деякими даними, у найбільш тренованих спортсменів Н може знижуватися до 6,95. Таке різке зрушення пов'язане з підвищенням концентрації молочної кислоти в крові до 250-300мг в 100мл крові.
У тренованих спортсменів виробляється стійкість тканин до зрушень внутрішнього середовища в кислу сторону (тканинна адаптація). Провідна роль в ній належить стійкості вищих відділів головного мозку. Крім того, в крові тренованих спортсменів підвищується активність ферментів, прискорюючих взаємодію буферних речовин з молочною кислотою. Буферна місткість крові підвищується.