Смекни!
smekni.com

Именование и существование в структуре дискурса (стр. 2 из 5)

Однако арифметический дискурс включает и именование иного рода, нежели обозначение протяженных конструкций с помощью чисел и числовых операций. Очень часто при формулировке каких-либо утверждений о числах пользуются буквенными обозначениями. В таком случае, вместо единичного объекта, который следовало бы предъявить при экспозиции, возникает знаковая конструкция, являющаяся именем того объекта, о котором идет речь. Здесь возникает несколько странных особенностей. С одной стороны знаковая конструкция в арифметике замещает не один, а множество подобных числовых объектов. Она носит общий характер, причем эту общность следует понимать не как общность абстракции, а как общность структуры. Если, например, вместо нечетного числа мы пишем '2n+1', то вводим принцип порождения всех объектов, соответствующих заданному общему понятию. С другой стороны, вводя имена, мы пользуемся ими и построенными из них выражениями как единичными объектами. Работая с именами, мы производим пространственно определенные конструкции, создаваемые воображением и представимые в созерцании. Сам способ введения этих имен полностью соответствует экспозиции в геометрической теореме. Так, сформулировав общее утверждение о свойствах целых чисел, мы, переходя к его доказательству, произносим: "Пусть n - целое число, тогда" и т.д. Дальнейший дискурс вообще ничем не отличается от алгебраического. Однако при доказательстве алгебраической теоремы конструируется объект того же вида, что и любой другой, для которого справедлива теорема. Разумеется, вместо a0+a1 z+....+an zn можно написать b0+b1 x....+bm xm ,но ничего принципиально иного здесь появиться не может. Точно так же при доказательстве геометрической теоремы мы могли использовать остроугольный треугольник и считать потом, что она справедлива также и для тупоугольного. В арифметике же буквенные выражения есть имена числовых (или даже протяженных) объектов, которые, однако, вообще не конструируются в дискурсе. Конструируется совершенно не тот объект, о котором ведется рассуждение. "Тот" объект, конечно же может быть в любой момент предъявлен, но в дискурсе он не присутствует.

Таким образом в арифметике происходит именование непостроенного объекта, некая квазиактуализация понятия. Работа со знаковой конструкцией в арифметике подобна работе с такой же конструкцией в алгебре, но в алгебре эта конструкция представляет собой одновременно и предмет исследования, а в арифметике только имя этого предмета. Ее нужно рассматривать как некую систему пустых мест, на которые должны быть поставлены любые объекты определенного вида. Тот факт, что вместо объектов можно работать с их именами, организованными в определенную структуру, обнаруживает, что для развертывания дискурса нам важны не сами эти объекты, а отношения между ними. Но немаловажно еще и то, что развертывание дискурса приводит к объективизации отношений. Наше рассуждение обязательно должно быть отнесено к остенсивно определяемому предмету, к пространственной конструкции - протяженной или знаковой.(См. примечание 3)

Итак именование представляет собой актуализацию предмета даже тогда, когда сам этот предмет не конструируется. Такой ход характерен не только и даже столько для арифметики, сколько для тех сфер математики, которые пытаются работать с бесконечными предметами. Введение предельных понятий, например, в том и состоит, что для объекта, точнее квазиобъекта, неконструируемого предмета находится имя, актуализирующее его в дискурсе. При этом дальнейшее развертывание дискурса оказывается все же вполне конструктивной процедурой, но строится в этой процедуре не предмет исследования, а последовательность выражений, интерпретируемых как высказывания об этом предмете. Например, обозначив предел числовой последовательности буквой 'a', мы можем строить знаковую конструкцию по правилам, предписанным определением предела. Любая теорема о существовании предела последовательности будет в этом случае предположением возможности названного понятия. Но чтобы показать эту возможность, нужно конструировать не саму эту последовательность вместе с ее пределом, а рассуждение о пределе, записываемое по определенным формальным правилам.

3 Дискурс имен и неконструктивные "объекты"

Именование делает математику способной рассматривать как действительные те предметы, которые никак не могут быть непосредственно построены. Возможность соответствующего этим предметам понятия обнаруживается, однако, по той же самой схеме, которую мы описали выше. Но конструкцией (играющей роль геометрического дополнительного построения) будет в этом случае сам дискурс, само математическое рассуждение, которое строится по определенным правилам. Неконструктивность исследуемых предметов вновь необходимо делает создаваемую знаковую конструкцию той самой системой пустых мест, о которой мы говорили выше. Но если в арифметике на пустое место всякий раз мог быть поставлен сконструированный объект, то в тех областях математики, которые "имеют дело с бесконечностью", туда нечего поставить, кроме имени.

Последнее означает, что существование в этом случае может быть понято только как существование элемента в структуре отношений. Хотя нельзя игнорировать и иную возможную интерпретацию существования предмета, актуализируемого с помощью имени. Можно (в духе математического реализма) считать, что используемое в рассуждении имя есть имя сущности. Эта идеальная сущность определяется через ряд атрибутов или свойств и предполагается пребывающей независимо от всякого дискурса. В рассуждении можно, исходя из известных, определяющих свойств обнаружить еще ряд неизвестных, увеличив таким образом наше знание о сущности. Но такая интерпретация требует очень жестких мер предосторожности. Называя те предметы, которые мы не можем построить, мы рискуем начать рассуждать о чем-то вовсе не существующем и стать жертвами иллюзий и беспочвенных спекуляций. На эту опасность указывал в свое время Беркли. Считая имя специальным знаком, предназначенным для обозначения идей (т.е. воспринимаемых чувствами вещей, которые существуют именно потому, что воспринимаются), он утверждал, что процедура именования создает иллюзию абстрактных понятий, поскольку имена начинают рассматривать отдельно от тех идей, которые они обозначают. (См. примечание 4) В математике, впрочем, происходит нечто еще более опасное - слова не просто отделяются от своих предметов, но возникает возможность конструировать новые слова, которым не соответствуют никакие идеи. Именно такими беспредметными образованиями считал Беркли понятия "флюксия", "дифференциал", "бесконечно малая величина". Использование таких понятий в рассуждении чревато, по мнению Беркли, серьезными противоречиями и ошибками (которые он сам пытался обнаружить в современных ему работах по дифференциальному и интегральному исчислению - см. [8] c.406-407, 410-420). Трудно сказать, в какой мере последующее развитие математики опровергло рассуждение Беркли о противоречивости математического анализа, однако появление известных парадоксов теории множеств также связано с попыткой именования невозможных сущностей. Именно такой сущностью является, во всяком случае, канторовская W - пример, показывающий, что, определив общее понятие и попытавшись с помощью имени актуализировать соответствующий ему предмет, можно получить противоречие ([31],c. 365). Ясно, что такой подход требует принятия некоторых ограничений (или, как говорил Кант, дисциплины). С другой стороны, также ясно, что ограничение, предлагаемое, например, Беркли, и состоявшее в том, чтобы не выходить за пределы рассмотрения чувственно воспринимаемых объектов, слишком обременительно для математики. (См. примечание 5)

Если вернуться к рассмотрению структуры дискурса, то в нем, как мы видели, присутствуют имена различных предметов - как представимых созерцанию конструкций, так и квазиобъектов, которые невозможно сконструировать. Помимо предела последовательности, таковыми являются, например, бесконечно удаленная точка в проективной геометрии или канторовские трансфинитные числа. Мы видели, однако, что сам дискурс, оперирующий с именами этих квазиобъектов, все же является конечной конструкцией - именно на такой посылке основывается гильбертовская программа обоснования математики. Допустимость использования неконструируемых предметов обосновывается исследованием самого дискурса, в котором их имена должны занять определенное место.

Сейчас нам представляется уместным вновь вернуться к гильбертовскому пониманию существования, и взглянуть на него с точки зрения рассмотренных нами выше категорий.

Общее утверждение о неконструктивном объекте (или идеальном элементе, если следовать терминологии Гильберта) есть предположение о возможности соответствующего понятия. Однако характер исследуемого предмета не позволяет, как это было в финитном случае, непосредственно актуализировать понятия, фигурирующие в данном утверждении. Поэтому используется квазиактуализация, сводящаяся к простому именованию идеального элемента (или нескольких идеальных элементов, понятия которых обсуждаются). Доказательство утверждения, будучи знаковой конструкцией, создаваемой сообразно схеме понятия, (именно того понятия, возможность которого устанавливается) является, как и в любом алгебраическом рассуждении, построением, актуализирующем это понятие. Понятие возможно потому, что мы в состоянии предъявить конечную знаковую конструкцию, т.е. соответствующий ему действительный объект. Действительность этого объекта означает, что его конструирование велось не просто в соответствии со схемой данного понятия, но и правилами, предписанными для конструирования любого объекта (т.е. любого доказательства) данной теории. Здесь, между прочим, вполне точно воспроизводится ситуация с геометрической теоремой, рассмотренная нами в предыдущей главе. Там объект, созданный в результате дополнительного построения, был действительным потому, что создавался по правилам, предписанным евклидовыми постулатами. Точно также и доказательство конструируется сообразно с аксиомами данной теории. Однако необходима важная оговорка по поводу самих этих аксиом. Нужно, чтобы любой объект, создаваемый по предписанным ими правилам обладал свойством непротиворечивости. Это, как мы говорили выше, вполне конструктивное свойство, приписываемое конечному и доступному созерцанию предмету в результате синтеза, производимому в метатеории.