Смекни!
smekni.com

Именование и существование в структуре дискурса (стр. 3 из 5)

Действительность объекта, конструируемого при доказательстве, есть необходимое и достаточное условие действительности элементов создаваемой конструкции. Именно так следует понимать существование идеальных объектов. Они существуют, если их имена актуализированы в реально созданной (т.е. действительной) конструкции. То же самое условие следует рассматривать как условие возможности понятия идеальных элементов. Поскольку действительность построения включает непротиворечивость конструкции, то оказывается, что возможность понятий эквивалентна отсутствию противоречия в теории, использующей эти понятия. Мы, следовательно пришли к весьма специфическому пониманию логической возможности - выяснилось, что логическая возможность совпадает с реальной.

Итак, о существовании идеальных объектов можно говорить лишь постольку, поскольку они являются элементами в структуре дискурса. Более того, само их введение служит целям построения дискурса. Е.Д. Смирнова, интерпретируя Гильберта, утверждает, что "идеальные образования и утверждения, выводящие за пределы высказываний о конкретных конфигурациях, реализуемых в пространстве и времени, следует рассматривать как фикции, используемые лишь для удобства выводов" ([51], c.239). При этом важно помнить, что сами выводы также являются пространственно-временными конфигурациями. Предположение о возможности таких объектов есть акт рефлектирующей способности суждения. Это гипотеза, позволяющая представить ряд уже имеющихся конструкций (реальных объектов) в виде единой объемлющей конструкции, завершенного дискурса - доказательства или целой теории. Дискурс включает в себя имена идеальных элементов, подобно тому, как эллипс, описывающий орбиту небесного тела, включает в себя все места в пространстве, в которых это тело может оказаться. Чтобы ввести идеальный элемент, нужно уметь предвидеть структуру дискурса, в которой этот элемент займет нужное место. (См. примечание 6)

Примечания

1. Все это прекрасно описано, например, в "Геометрии" Декарта.

2. Таким "дополнительным построением" является, например, умножение в столбик многоразрядных чисел. Поскольку, впрочем, эта операция освоена всеми в начальных классах школы, то для ее выполнения вовсе не нужно действия рефлектирующей способности суждения. Можно однако представить себе как действует эта способность, если названный метод вычисления находится нами впервые и мы располагаем лишь общим определением умножения и рядом единичных примеров перемножения одноразрядных чисел. Вообще действие рефлектирующей способности суждения становится очевидным при выполнении такого вычисления, для которого не разработано общей методики.

3. Именование непостроенного объекта происходит и в алгебре. В нашем примере оно также имело место, когда мы обозначили степень полинома буквой 'n'.

4. Сам Беркли считал, что никакими общими понятиями человек обладать не может. Есть лишь общие слова, служащие для обозначения многих частных идей ([6], c.158-162).

5. Рассуждение Беркли может иметь нечто общее с брауэровским проектом построения математики. Желание ограничить предмет математики конечными числовыми конструкциями, полностью представимыми в воображении, близко к намерению не выходить за пределы чувственных восприятий. Хотя оба мыслителя совершенно по-разному представляли себе деятельность математика и природу математических объектов, однако их сближает некий радикализм в попытке ограничения сферы исследования этой науки. Насколько нам известно, в истории математики нет других примеров такого рода - когда бы предлагалось практически ликвидировать целые математические дисциплины.

6. Е.Д. Смирнова, сопоставляя взгляды Гильберта с философией Канта, указывает на связь идеальных элементов с трансцендентальными идеями разума. Именно действие разума позволяет выйти за рамки пространственно-временных отношений и перейти к рассмотрению понятий, не описывающих ничего, что лежало бы в ряду явлений. Мы не можем согласиться с такой интерпретацией, поскольку, считаем, что своим появлением в математическом рассуждении идеальные элементы обязаны не разуму, а способности суждения. Хотя при определении этих элементов и происходит "отлет от реальности" (выражение Е.Д. Смирновой), но все же их введение приводит к созданию новой реальности - дискурсивной конструкции, разворачиваемой в пространстве и времени. (Заметим, что слово "реальность" понимается здесь строго в кантовском смысле - см. Примечание 2 к Главе 3.) Акт рефлективной способности суждения как раз и подразумевает такое, если можно так выразиться, квази-трансцендирование, уход от реальности наличного опыта (но не выход за пределы возможного опыта). Именно в таком действии и состоит смысл финитной установки - всякое обоснование должно быть основано на предъявлении конечного, доступного созерцанию объекта. Поэтому для понятия идеального элемента (например, для понятия бесконечно удаленной точки или трансфинитного числа) чувства могут дать адекватный предмет (ср. B383 - "Под идеей я разумею необходимое понятие разума, для которого чувства не могут дать адекватного предмета."). Дискурсивная конструкция в самом деле есть адекватный предмет для понятия идеального элемента, поскольку помимо этого дискурса его вообще невозможно мыслить. Трансцендентальные идеи призваны играть в рассуждении иную (хотя в чем-то и близкую) роль нежели идеальные элементы. Идея создает целостность условий, т.е. безусловное единство в бесконечном ряду обусловленного (см. B379). Идеальные элементы также создают единство, но отнюдь не безусловное, а весьма относительное. Введение числа w - порядкового типа множества натуральных чисел - создает единство в натуральном ряду, т.е. является условием единства натурального ряда. Но порядковые типы можно множить до бесконечности, причем каждое последующее будет условием единства для ряда предыдущих. Единственное, что может претендовать на роль трансцендентального понятия, - это "множество всех чисел", которое нельзя мыслить без противоречия. Трудно сказать, есть ли прямая связь между антиномиями чистого разума и канторовскими парадоксами, но определенная аналогия все же усматривается.

***

В качестве итога проведенного исследования мы можем теперь определить ряд выявленных в нем онтологических категорий.

Первой в этом ряду категорий должна быть указана конструкция, обозначающая результат пространственно-временного построения. Конструкция всегда явлена в пространстве и представляет собой продукт некоторой регулярной (т.е. подчиненной правилу) деятельности. Этот продукт является созерцанию благодаря действию способности воображения. Выделяя временной аспект, мы должны рассматривать конструкцию как след. Выделяя аспект целесообразности, мы называем конструкцию объектом. Всякая конструкция строится для того, чтобы решить определенную задачу. Мы должны ответить на вопрос, связанный с определенным образом построенным объектом. Но ответ на вопрос является результатом "встраивания" этого объекта в более общую, объемлющую его конфигурацию. Особенно это важно при решении вопроса о существовании. Суть всякого исследования сводится к построению конструкции определенного рода, в которой исследуемый объект занял бы определенное место.

Конструкция, включающая в себя объект, называется дискурсом. Категория дискурса собственно и определяется таким включением. Но этим же включением определяется и категория объекта. Последний не может быть изолированной конструкцией. Он является объектом, поскольку является предметом дискурса.

Но предметом дискурса может стать любая завершенная конструкция. В том числе и сам дискурс. В метаматематике Гильберта это проявляется особенно ясно. Гильберт сознательно делает доказательство (т.е. дискурс) объектом иного дискурса.

Однако любое математическое и естественнонаучное исследование подразумевает такое расширение конструктивной деятельности. Если мы интерпретируем построенную конструкцию как факт, то для этого факта следует искать объясняющую гипотезу. Заметим, что факт означает не только построенный объект, но и установленное в рамках некоторой конструкции отношение объектов, т.е. по существу тот же дискурс. Следовательно, перед нами открывается перспектива неограниченного роста дискурса (или безграничного конструирования объектов). Такая перспектива требует указания горизонта упомянутого роста, своего рода объясняющей гипотезы (впрочем, совершенно иной, нежели общая конструкция рефлектирующей способности суждения). Если мы, вслед за Кантом, будет рассматривать новое объемлющее построение как условие ряда предшествующих конструкций, то нам требуется указать понятие (которому, однако, уже не будет соответствовать никакая конструкция) являющееся безусловным в ряду всех возможных конструкций или, иными словами, абсолютным условием всех возможных дискурсов.

Речь, следовательно идет о том, что Кант называл трансцендентальной идеей. Обращение к ней позволяет рассматривать безграничный ряд связанных друг с другом явлений как ограниченное проявление некоторого общего принципа. Наличие такого принципа позволяет предполагать, что наше ничем не ограниченное восхождение от частных построений к все более общим совершается так, как если бы некий рассудок уже построил какую-то глобальную конструкцию, которую мы только изучаем (а не создаем).