Пусть формула U(A1, ..., An), содержащая только символы предикатов A1, ..., An, каждый из которых зависит от одного переменного, выполнима на некотором поле M. эту формулу мы можем предполагать представленной в нормальной форме, а все предметные переменные в ней связанными. В самом деле, какова бы ни была формула U, мы можем, произведя над ней преобразования, привести её к виду, в котором все кванторы предшествуют остальным символам формулы, при этом состав её предикатов и предметных переменных не изменяется. Если в U есть свободные предметные переменные, то можно связать их квантором общности.
Итак, допустим, что U – нормальная формула. Тогда мы можем представить её следующим образом:
(s x1)(s x2)...(s xp) B(A1, ..., An, x1, ..., xp),
где каждый из символов (s xi) обозначает квантор ("xi) или ($xi), а формула
B(A1, ..., An, x1, ..., xp)
кванторов не содержит.
В формуле B(A1, ..., An, x1, ..., xp) все переменные x1, ..., xp входят в предикаты A1, ..., An, и её можно записать в виде
B(A1(
), ..., An( )),где i1, ..., in – числа от 1 до p. Однако, будет удобнее пользоваться выражением
B(A1, ..., An, x1, ..., xp),
если иметь в виду, что B является логической функцией предикатов Ak, а каждый предикат Ak зависит от какого-то одного переменного
.Покажем, что если для некоторого поля M существуют индивидуальные предикаты
,..., ,для которых формула U(
,..., ) истинна, то эта формула истинна и на некотором подмножестве этого поля, содержащем не более элементов, так как иначе наше утверждение тривиально. Разобьём элементы множества M на классы следующим образом. Для каждой последовательности, содержащей n символов И и Л в произвольном порядке (И, Л, Л, ..., И,), существует часть (может быть, пустая) множества M, содержащая те и только те элементы x, для которых последовательность значений предикатов (x), (x), ..., (x) совпадает с данной последовательностью символов И и Л.Обозначим через
1, 2, ..., nпоследовательность символов И и Л, где
i представляет собой И или Л, а соответствующий этой последовательности класс элементов x обозначим , , ..., .Некоторые из этих классов могут оказаться пусты, так как может случиться, что для некоторой последовательности
1, 2, ..., n не существует такого элемента, для которого предикаты , , ..., принимают соответствующие значения 1, 2, ..., n . Вместе с тем каждый элемент множества M принадлежит одному из классов , и различные классы общих элементов не имеют. Число всех классов (пустых и непустых) равно числу последовательностей 1, 2, ..., n, т. е. . Следовательно, число q непустых классов не превышает . Выберем из каждого непустого класса по одному элементу и обозначим эти элементыa1, a2, ..., aq.
Множество всех этих элементов обозначим
.докажем, что если формула U( , ..., ) истинна на поле M, то она истинна и на поле (так как – часть поля M, то предикаты определены на ). каждому элементу x поля M поставим в соответствие элемент из , принадлежащий тому же классу, что и х. В существует один и только один такой элемент. Элемент из , поставленный в соответствие х, обозначим (х). Можно сказать, что мы построили функцию, определённую на множестве M и принимающую значения из множества . Легко видеть, что имеет место следующая равносильность: (х) ~ ( (х)).Действительно,
(x) принадлежит тому же классу , что и x. Но, по определению, для элементов одного и того же класса каждый предикат принимает одно и то же значение. Отсюда следует, что если в формуле U( , ..., ) для каждого предметного переменного t заменить каждое выражение (t) через ( (х)), то формула U( , ..., ) перейдёт в формулу ( , ..., ), равносильную первой. Написание формулы отличается от U только тем, что все предметные переменные x, y, z, …, u формулы U замещены соответственно через (х), (y), ..., (u). Это следует из того, что по условию формула U( , ..., ) содержит только предикаты , и поэтому всякое предметное переменное входит только под знаком одного из этих предикатов.