На основе статистической трактовки природы второго закона термодинамики Л. Больцман разработал последовательное разрешение парадокса «тепловой смерти» Вселенной. Современной точки зрения оно уже не является достаточно полным и достаточно убедительный, но в то время это было первым логическим согласованным «в рамках имевшихся теоретических представлений» ответом на вопрос, почему «тепловая смерть» ещё не наступила. По Л. Больцману, «тепловая смерть» наступила много раз и много раз Вселенная в большей или меньшей степени отклонилась от равновесного состояния полного молекулярного беспорядка к состояниям неравновесным и более упорядоченным, то есть к состояниям с меньшей энтропией, с температурными различиями. Это возможно потому, что в процессах, подчинённых статистическим законам, всё время возникаю флуктуации - случайные отклонения от наиболее вероятного состояния.
Молекулярно – кинетическая концепция, в отличие от классической механики, имела принципиально иную методологическую основу, она раскрывала реальную структуру вещества и внутренний механизм процессов, происходящих в газах, жидкостях, твёрдых телах.
- Теория электромагнитного поля и кризис механической картины мира.
Дж. К. Максвелл не только внёс вклад в развитие молекулярно – кинетической концепции, базировавшейся на представлениях механической картины мира, но и создал теорию электромагнитного поля, вызвавшую кризис и крушение этой картины.
Механическая картина мира опиралась на представления, что силы действуют по направлению прямой, соединяющей взаимодействующие тела (материальные точки), то есть являются центральными силами. Другими словами в картине мира классической механики все взаимодействия сводились к притяжению или отталкиванию частиц, это было, пожалуй, главным основанием для того, чтобы в рамках ньютоновской системы абстрагироваться от роли промежуточной среды в передачи взаимодействия.
С открытием Х. К. Эрстеда возникла принципиально новая ситуация противоречившая представлениям механической картины мира: на определённом расстоянии от проводника с током на магнитную стрелку действовала сила, которая не притягивала и не отталкивала, а лишь стремилась вращать стрелку вокруг проводника, то есть действовала в «бок». В след за развитием Эрстеда А. Ампер доказал на опыте, что круговой электрический ток создаёт магнитное поле, направленное по оси круга. Тем самым была выявлена не только удивительная симметрия электрического и магнитного явления (прямолинейный проводник с током создаёт магнитное поле, направленное по кругу вокруг проводника; круговой ток создаёт магнитное поле, направленное по оси круга), но и их глубокое внутреннее единство, взаимопорождение.
В то же время радикальное противоречие с важнейшим принципом классической физической картиной мира – принципом центральных сил – вынуждало признавать активную роль среды, окружающей проводники или магниты, в том числе и физического «вакуума». Таким образом, становилось необходимым существенно изменить представление в физической картине мира, включив в неё принципиальную роль промежуточной среды.
Эрстед по существу установил решающий факт, существенно повлиявший затем на переход от механической картины мира к новой, электромагнитной.
В 1831 году М. Фарадей установил, что в момент изменения величины тока в одном контуре в расположенном рядом контуре на короткое время возникает электрический ток. В момент движения магнита около катушки в ней тоже на короткое время возникает электрический ток. Принципиально новым было здесь не только то, что процесс каким – то образом передавался через физический вакуум, которому приходилось теперь приписывать свойства особой среды. Новым по сравнению с картиной мира классической физики было и то, что представления о постоянном воздействии одного тела на другое (как это было в случае тяготения или взаимодействия электрически заряженных тел) замещались представлениями импульсов или волн в момент изменения состояния одного из тел.
Электромагнитная концепция, которой захотели теперь заменить прежнюю, заключалась, прежде всего, в полнейшем отказе от всех образных представлений, от тех «механических моделей» без которых когда-то не существовало настоящей физики.
- Эйнштейн и рождение релятивистской физической картины мира.
Там, где многие физики, пользовавшиеся теоретическими представлениями об электронах, взаимодействующих с электромагнитным полем, не видели проблемы. А. Эйнштейн видел принципиальную методологическую трудность.
Теория Максвелла была логически и методологически неполна по меньшей мере в двух аспектах:
- во-первых, она не совмещалась с фундаментальным принципом классической физики – принципом относительности, её уравнения не были инвариантными[4] относительно преобразований Галилея;
- во – вторых, как выяснилось, полевая картина мира (или, как её обычно называют, электромагнитная картина мира) оказалось недостаточным в качестве концептуальной основы нового этапа развития физики, ибо не позволяла с единой точки зрения объединить все рассматриваемые в теории процессы.
Таким образом, вопреки широко распространённой точки зрения есть основания утверждать, что надежда построить соответствующий раздел физики на основе электромагнитной картины мира не была осуществлена, хотя представления о такой картине мира активно обсуждались.
Революция в физике, вызванная теорией Максвелла, всё же привела к рождению новой релятивистской картины мира. Важная роль в её создании и последовательном развитии принадлежит А. Эйнштейну. Необходимость её создания диктовалось требованием обеспечить логическую согласованность теоретической системы, а также неодолимой силой опытных фактов. Недостающая внутренняя и внешняя согласованность теоретических представлений электродинамики в острой форме появилась с возникновением не устраненных физических парадоксов. Сегодня можно с уверенностью сказать, что их обнаружение явилось признаком кризиса физической картины мира и вместе с тем начавшейся революцией в физике.
Один из важных парадоксов состоит в следующем. Из очень общих представлений о свойствах пространства и времени, казавшихся очевидными в рамках механической картины мира, непосредственно вытекали формулы преобразования координат от одной системы к другой, движущейся относительно первой (преобразования Галилея, непосредственно связанные с его принципом относительности).
Как выяснилось, уравнение Максвелла не были инвариантными относительно преобразований Галилея, то есть к электромагнитным процессам галилеевский принцип относительности оказался не применим. Из этого следовал вывод, что в эксперименте можно выявить скорость равномерного прямолинейного движение объекта относительно поля (эфира). Однако сопоставление этих теоретических следствий с экспериментальными данными обескураживал физиков: в одних опытах (например, в явлении абберации, то есть кажущиеся смещения наблюдаемых в телескоп звёзд из – за движения Земли) эфир следовала считать абсолютно неподвижным; в других (например, в опытах по изменению скорости света в движущейся воде) – результат был таков, как если бы эфир частично увлекался движением воды.
В формулировке А. Эйнштейна принцип относительности приобрёл более богатое физическое содержание: «Законы, по которым изменяются состояния физических систем, не зависят от того какой из двух координатных систем движущихся равномерно и прямолинейно относительно друг друга, отнесены эти изменения состояния…».
А. Эйнштейн в первой публикации по основам специальной теории относительности он вводит понятие физического события в качестве фундаментального элемента новой картины мира, замещающего образ материальной точки.
Во всех последующих работах Эйнштейн будет пользоваться идеализацией точечного пространственного – временного физического события как элементарного объекта теории, представляющего в теоретических моделях физическую реальность.
Физическая картина мира Галилея – Ньютона, в которой мир отображён как множество материальных точек, движущихся в пространстве с течением времени, замещается в специальной теории относительности Эйнштейна картиной мира, представленной множеством точечных пространственно – временных материальных событий. Глубокое единство материи движения, движения, пространство, времени получило здесь концентрированное выражение: на место образов вещей ставились образы материальных процессов.
Специальная теория относительности предполагает существование материальных полей и материальных частиц, но изображает в теоретических моделях не частицы и поля непосредственно, а отношение между происходящими с ними событиями. В связи с этим можно сказать, что смысл теории относительности, отражённый в её наименовании, состоит не в том, что некоторые физические величины меняют численное значение при переходе к другой системе отсчёта (такие величины были в классической механики), а скорее в том, что эта теория отражает закономерности отношений между событиями.
Переход к новой картине мира сопровождался достаточно мучительным процессом исключения из теории фиктивных образов, в первую очередь понятие эфира с механическими свойствами.
Образ эфира, понимавшегося в соответствии с представлениями механической картины мира, был замещён образом полевых процессов, выраженным с помощью идеализационных событий. По убеждению А. Эйнштейна, и специальная, и общая теория относительности основывается на полевых представлениях (поле и есть «эфир» в новом понимании).
Заключение.
Вопрос о неизбежной ограниченности естественно научных теорий специально рассматривался ученым физиком В. С. Барашенковым. Он убедительно доказывает, что возможность построения относительно "законченных теорий" (типа механики Ньютона, термодинамики, электродинамики Максвелла, квантовой механики, теории гравитационных полей Эйнштейна и др.), достаточно полно, описывающих различные формы движения материи, не означает возможности в одной или нескольких таких теориях полностью "перекрыть" весь мир, исчерпать все качественное многообразие законов природы. Каждая такая теория не учитывает многие параметры, второстепенные в данном приближении, но становящиеся важными при дальнейшем углублении в суть рассматриваемых явлений. Это и привод к неизбежной ограниченности сферы применения теорий. Возможность "законченных теорий" означало бы возможность конца науки, дальше которого нечего было бы познавать. И, наоборот, непреодолимая ограниченность каждой отдельной теории предполагает бесконечность всего научного познания. Известные науки, обобщающие теории составляют важные этапы её развития. Все они основаны на конкретных принципах, обобщающих определенный круг фактов, и допускают возможность и необходимость своего дальнейшего развития по пути создания все более общих и глубоких теорий, учитывающих новые, неизвестные ранее факты. Таков закон познания, обусловленный законами природы.