Ослабление радиационного эффекта – вполне реальная задача. При введении в организм перед облучением некоторых веществ-ингибиторов осуществляется так называемая химическая защита. Биофизика выявляет физико-химические свойства молекул веществ-ингибиторов и на основе общих принципов дает методы
подбора необходимых соединений.
Вопрос размена и передачи энергии при фотохимических процессах стоит в основе другой важной биофизической проблемы – проблемы механизма фотосинтеза. С этой проблемой связан также еще один принципиальный для биофизики вопрос: вопрос о возможности миграции энергии и о механизме такой миграции. Есть основания полагать, что химическая реакция при фотосинтезе протекает не в том месте, где осуществляется первичный процесс взаимодействия квантов света с веществом, а на некотором расстоянии , т.е. там, куда переносится поглощенная энергия.
В таком же аспекте изучаются биофизикой первичные механизмы , лежащие в основе зрительного акта, исследуются продукты фотохимических реакций, происходящих при поглощении энергии света пигментами зрительных рецепторов.
Следующим важным направлением биофизики является исследование проницаемости клеток и тканей. Физико-химическая биология уже давно занимается выявлением закономерностей проникновения вещества в живые клетки. Это практически важный вопрос, так как с проницаемостью связано фармакологическое :действие лекарственных веществ и токсическое действие различных ядов. Проникновение веществ в клетки зависит в первую очередь от физико-химических свойств молекул, их растворимости, их электрических свойств – распределения зарядов. Биофизика должна установить коррелятивную связь между этими свойствами ващества и его способностью проникать в клетки. С другой стороны , проницаемость связана со способностью поверхностных клеточных мембран пропускать те или иные вещества. Поэтому биофизика изучает и физико-химические свойства биологических мембран и способы повышения или понижения проницаемости действием различных агентов. Последнее имеет большое значение для лечебных мероприятий, для применения ядовитых инсектицидов в сельском хозяйстве, при дезинфекции и т. п.
Протоплазма клеток состоит из высокополимерных веществ, в основном полиэлектролитов, и обладает свойствами, присущими этому классу соединений. Углубленные исследования в этой области открывают новые возможности для изучения свойств протоплазмы. В частности, в настоящее время уже удалось значительно приблизиться к пониманию вопроса об избирательном поглощении калия живыми клетками.
Изучение физико-химических превращений биополимеров в клетке тесно связано с выявлением механизма возникновения возбуждения и биоэлектрических потенциалов как в недифференцированных клетках, так и в специализированных нервных и мышечных элементах. Физиология уже давно использует биоэлектрические потенциалы для оценки физиологических и патологических состояний организма. Перед биофизикой стоит другая большая задача – выявить физико-химические причины появления и развития биоэлектрических потенциалов, определить их энергетические источники и этим открыть путь для более глубокого анализа физико-химического состояния клеток в норме и патологии.
Биофизика вместе с другими дисциплинами принимает сейчас участие в расшифровке важнейших вопросов о физико-химических механизмах передачи наследственных свойств и изучает механизмы, определяющие устойчивость вида и его изменчивость. При этом анализируются те силы, которые вызывают деление и расхождение хромосом, физико-химические основы взаимодействия нуклеиновых кислот, физико-химическая природа гена и т.д.
Наконец, в настоящее время большое внимание биофизики привлекает проблема авторегуляции. В изучении авторегуляции заинтересована не только биология, но и техника, так как некоторые механизмы авторегулирования, существующие у живых организмов, могут послужить источником новых идей для различных областей техники. Действительно, в биологических системах существуют весьма совершенные механизмы для регулирования химических реакций, лежащих в основе энергетического обмена веществ. В клетках с удивительным постоянством поддерживаются величины рН и ионный баланс калия и натрия даже при значительных изменениях концентрации во внешней среде. Биологические системы очень хорошо координируют уровни протекания энергетических процессов. При этом, несмотря на высокую лабильность и способность реагировать на незначительные изменения во внешней среде, биологические системы обладают высокой надежностью. Авторегулирующие механизмы играют большую роль в приспособлении животных и растений к изменяющимся условиям внешней среды. Для понимания вопросов авторегулирования требуется разработка термодинамики и кинетики биологических процессов, что и составляет важнейшую задачу биофизики.
Пути âçàèìîäåéñòâèÿ íàóê.
Äâå ñëåäóþùèå ôîðìû âçàèìîñâÿçè íàóê – èõ "ïåðåïëåòåíèå" è "ñòåðæíåçàöèÿ". Àíàëèç ïðîöåññà âçàèìîäåéñòâèÿ íàóê â íàøå âðåìÿ ïîçâîëÿåò ñäåëàòü ñëåäóþùèé âûâîä: îñíîâíûìè òåíäåíöèÿìè â ýâîëþöèè ñîâðåìåííûõ íàóê íà÷èíàÿ ïðèìåðíî ñ ñåðåäèíû ÕÕâ.– ñ ìîìåíòà ïîëíîãî ðàçâåðòûâàíèÿ íàó÷íî-òåõíè÷åñêîé ðåâîëþöèè – ñòàëî äâèæåíèå â ñòîðîíó èõ "ïåðåïëåòåíèÿ" è èõ "ñòåðæíåçàöèè". Îäíàêî â ñàìîé ñòðóêòóðå íàó÷íîãî çíàíèÿ, â åãî àðõèòåêòîíèêå åùå ñèëüíû è äàþò ñåáÿ çíàòü åãî "ðîäèìûå ïÿòíà", ñâèäåòåëüñòâóþùèå î ðîæäåíèè íàóê â ïåðèîä ãîñïîäñòâà îäíîñòîðîííå-àíàëèòè÷åñêîãî ìåòîäà èññëåäîâàíèÿ.  ñàìîì äåëå, íà÷èíàÿ ñ XVI – XVIII ââ. âñå íàó÷íîå çíàíèå áûëî ðàñ÷ëåíåíî íà ðÿä ôóíäàìåíòàëüíûõ îòðàñëåé, ðåçêî îáîñîáëåííûõ ìåæäó ñîáîé. Ýòî ïîâëåêëî çà ñîáîé äâà ñëåäñòâèÿ:
* ïåðâîå – ÷ëåíåíèå çíàíèÿ íà åãî îòäåëüíûå îòðàñëè , ò.å. óçêóþ ñïåöèàëèçàöèþ;
* âòîðîå – îáðàçîâàíèå ìåæäó ýòèìè îòðàñëÿìè ðåçêèõ ðàçðûâîâ, ò.å. ïîëíîå îáîñîáëåíèå îäíîé ñïåöèàëüíîñòè îò äðóãîé.
Ïîñëåäóþùåå ðàçâèòèå íàóê â ñòîðîíó óñòàíîâëåíèÿ èõ âçàèìîñâÿçè ÷àñòè÷íî ïðåîäîëåëî, òî÷íåå ñêàçàòü, ñòàëî ïðåîäîëåâàòü ýòè ñëåäñòâèÿ îäíîñòîðîííå ïðèìåíåííîãî àíàëèçà: ïåðâîå ñëåäñòâèå, îäíàêî, îñòàëîñü, â ñóùíîñòè, íåçàòðîíóòûì, è âåñü íàó÷íûé ïðîãðåññ ñîâåðøàëñÿ è íåðåäêî ñîâåðøàåòñÿ ïîêà â ðàìêàõ ïðåæíèõ îòäåëüíûõ íàóê. Ïðåîäîëåíî ëèøü âòîðîå ñëåäñòâèå áëàãîäàðÿ âîçíèêíîâåíèþ íàóê ïðîìåæóòî÷íîãî õàðàêòåðà. Âñòàåò âîïðîñ: íå íàìåòèëèñü ëè óæå â íàñòîÿùåå âðåìÿ òåíäåíöèè ê ïðåîäîëåíèþ ïåðâîãî ñëåäñòâèÿ, к которому привело одностороннее применение анализа?