Знакомство с общей структурой метода гипотезы позволяет определить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.
Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически проверяемых следствий. Но дедуктивные умозаключения — не единственный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы используются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мысленный эксперимент.
Объяснительная гипотеза как предположение о законе — не единственный вид гипотез в науке. Существуют также «экзистенциальные» гипотезы — предположения о существовании неизвестных науке элементарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Способы выдвижения и обоснования таких гипотез отличаются от объяснительных гипотез. Наряду с основными теоретическими гипотезами могут существовать и вспомогательные, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Как правило, такие вспомогательные гипотезы позже элиминируются. Существуют и так называемые рабочие гипотезы, которые позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение.
Важнейшей разновидностью метода гипотезы является метод математической гипотезы, который характерен для наук с высокой степенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулируются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование.
Сфера применения метода математической гипотезы весьма ограничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследовании. К таким дисциплинам прежде всего относится современная физика. Метод математической гипотезы был использован при открытии основных законов квантовой механики.
Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п.
Анализ — необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. Заметим, что метод анализа сыграл в свое время важную роль в крушении теории флогистона.
Несомненно, анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания.
Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве.Осуществить этот второй этап в процессе познания — перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого возможно только в том случае, если метод анализа дополняется другим методом — синтезом.
В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т. п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т. е. позволяет понять подлинное диалектическое единство изучаемого объекта.
Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез же вскрывает то существенно общее, что связывает части в единое целое. Анализ, предусматривающий осуществление синтеза, своим центральным ядром имеет выделение существенного. Тогда и целое выглядит не так, как при «первом знакомстве» с ним разума, а значительно глубже, содержательнее.
Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез - это не две оторванные друг от друга операции. По своему существу они — как бы две стороны единого аналитико-синтетического метода познания.
Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод: так, существуют конкретные методы математического, химического и социального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.
Индукция (от лат. inductio — наведение, побуждение) есть формальнологическое умозаключение, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного к общему.
Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Наряду с другими методами познания, индуктивный метод сыграл важную роль в открытии некоторых законов природы (всемирного тяготения, атмосферного давления, теплового расширения тел и Др.).
Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих методов:
1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие — различны; следовательно, этот единственный сходный фактор есть причина данного явления).
2. Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).
3. Соединенный метод сходства и различия (представляет собой комбинацию двух вышеуказанных методов).
4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой некоторые изменения в другом явлении, то отсюда вытекает вывод о причинной связи этих явлений).
5. Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих факторов известны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления - остальные факторы, входящие в общую причину этого явления).
Родоначальником классического индуктивного метода познания является Ф. Бэкон. Но он трактовал индукцию чрезвычайно широко, считал ее важнейшим методом открытия новых истин в науке, главным средством научного познания природы.
На самом же деле вышеуказанные методы научной индукции служат главным образом для нахождения эмпирических зависимостей между экспериментально наблюдаемыми свойствами объектов и явлений.
Дедукция (от лат. deductio - выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному.
Но особенно большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае дедукция является отправной точкой зарождения новой теоретической системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений.
Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, пожалуй, единственной собственно дедуктивной наукой.
В науке Нового времени пропагандистом дедуктивного метода познания был видный математик и философ Р. Декарт.
Но, несмотря на имевшие место в истории науки и философии попытки оторвать индукцию от дедукции, противопоставить их в реальном процессе научного познания, эти два метода не применяются как изолированные, обособленные друг от друга. Каждый из них используется на соответствующем этапе познавательного процесса.