Смекни!
smekni.com

Основы философских знаний (стр. 28 из 40)

Замысел авторов принципа верифицируемости заключался в том, чтобы с его помощью отсечь от науки теоретические высказывания, которые не яв­ляются научными, но претендуют на это высокое звание. Например, "атаке" подверглись такие высказывания, как, "материя — первична, сознание — вторично", "мир бесконечен", "беспричинных явлений не бывает" и т.п. Оче­видно, это философские высказывания. Так же очевидно, что ни прямо, ни косвенно их невозможно проверить.

Однако выяснилось, что в структуре научного знания (и не только фи­лософского, но и естественнонаучного!) вообще нет таких даже эмпириче­ских утверждений, которые бы были совершенно свободны от явной или скрытой теоретической (непроверяемой) интерпретации. Мало того, выясни­лось, что сам принцип верифицируемости не верифицируется. Таким обра­зом, попытка отсечь непроверяемые, сугубо теоретические (как сказали бы во времена Гегеля — спекулятивные) высказывания от остальных очевидно на­учных (эмпирических) высказываний оказалась неудачной, иными словами, научное знание всегда содержит в себе некоторую компоненту, которую не­возможно прямо или косвенно проверить на опыте.

Фальсифицируемость

Когда это выяснилось, то была предпринятаследующая попытка. К. Поппером был сформулирован более сильный принцип — принцип фальсифицируемости. Суть его в том, что высказывание можно считать на­учно истинным, если возможно указать условия, пусть даже мысленные, при которых данное высказывание будет очевидно ложным. Например, если ско­рость тела окажется близкой к скорости света, то законы ньютоновской меха­ники становятся неистинными. Или: если подвергнуть газ высокому давле­нию, то законы для идеальных газов уже не работают, так как уже невозмож­но пренебрегать силами взаимодействия между молекулами, расстояние меж­ду которыми существенно уменьшается.

С этой точки зрения теоретические (в частности — философские) выска­зывания действительно не фальсифицируются. Скажем, указать условия, при которых высказывание "беспричинных явлений не бывает" нарушается, действительно невозможно. Стало быть, его следует объявить ненаучным. Однако рассмотрим высказывание, в истинности которого вряд ли кто-либо будет со­мневаться — "часть меньше целого". Оно тоже не фальсифицируется.

Следовательно, желая доказать ложность философских истин, точнее — их ненаучность, автор принципа фальсифицируемости рискует избавить науку от многих и многих теоретических положений, истинность и научность которых очевидна. Таким образом, данный принцип, как и принцип верифи­цируемости, не может служить абсолютным критерием отсечения ненаучных теоретических высказываний от научных. Можно сделать предположение, что таких абсолютных критериев вообще не существует; Здание научного знания оказывается сложнее, чем это представляется некоторым философам науки.

Глава 13. МЕТОДЫ ПОЗНАНИЯ И ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

Понятие мётода

Слово "метод" в переводе с греческого означает "исследование". Метод — это способ достижения цели, определённые приёмы познания или практической деятельности. Методо­логия — учение о методах. Метод не следует путать с методикой. Методика — это алгоритм каких-либо действий, для овладения которым не требуется обязательное знание теории процесса. Иными словами, это лишь техническая, внешняя сторона метода. Метод же опирается на определённую научную концепцию и систему теоретических знаний, то есть является следствием глубокого проникновения в суть явления. Например, существует метод "ме­ченных атомов": в лекарство вводят небольшое количество радиоактивного изотопа, а затем с помощью регистрирующих излучение приборов наблюда­ют за концентрацией атомов этого изотопа" в тех или иных органах человече­ского тела, делая отсюда выводы о распространении в нём лекарства. Мето­дика на основе этого метода означает лишь процедуру, последовательные действия, необходимые для конкретной реализации метода (приготовление раствора, обеспечение стерильности, введение раствора в организм, подклю­чение приборов и т.п.).

Френсис Бэкон сравнивал метод с фонарём, которым путник в темноте освещает себе путь. Даже хромой человек, говорил он, вооружённый пра­вильным методом, достигнет цели раньше, нежели всадник, скачущий на­обум. Знаменитый русский учёный И.П. Павлов подчёркивал, что даже не очень талантливый учёный, если он использует надёжный метод, обязательно достигнет успеха. Применительно к высшему техническому образованию можно сказать, что главная задача студента — овладеть методами инженер­ной деятельности, для чего необходимо усвоить всё богатство фундаменталь­ных теоретических знаний по своей специальности. Методы принято подразделять на обыденные и научные.

Обыденные методы

Обыденными называются методы деятельности, которыми люди пользуются в своей повседневной жизни.

Это прежде всего метод "здравого смысла" — спо­соб действий на основе массового житейского опыта. Способы действий, приводящие к успеху, накапливались, закреплялись и передавались от поко­ления к поколению. Принцип метода здравого смысла — подражание, а его девиз — "делай как я".

Ещё один обыденный метод — метод "проб и ошибок". Этот метод ис­пользуется, когда нет теории процесса, или она не известна. Человек пытается достичь цели; но не знает, каким путём идти. Он пробует так, пробует эдак — не получается. Попробовал иначе — получилось! Хотя чёткого представления — почему получилось — у него нет. Однако цель достигнута. Очевидно, что метод проб и ошибок — не лучший метод. Но, как говорится, лучше плохой метод, чем никакого. Следует заметить, что если в научной лаборатории пользуются методом проб и ошибок, то это говорит о невысоком качестве ис­следований.

Эмпирические методы

Научные методы подразделяются на эмпирические (опытные) и теоретические. К эмпирическим относится наблюдение — самый исторически древний ме­тод. Наблюдение — это исследование какого-либо процесса без вмешательст­ва в его протекание. Более высокая ступень — эксперимент, который осуще­ствляется с обязательным вмешательством в изучаемый процесс.

Допустим, мы хотим измерить силу тока в электрической цепи. Для это­го включаем в цепь амперметр. И хотя, амперметр обладает очень маленьким собственным сопротивлением, его включение несколько увеличивает сопро­тивление цепи. Следовательно, его показания немного меньше действительного значения силы тока. Но разницу при желании легко вычислить, добавив её к показаниям прибора. Таким образом, вмешательство и процесс включением измерительных приборов искажает сам процесс, но в большинстве случаев это вмешательство легко скорректировать, сделав соответствующие расчёты.

Однако существуют эксперименты, когда вмешательство становится непредсказуемым. Это прежде всего связано с исследованиями микромира, то есть мира элементарных частиц. Например, принцип неопределённостей Гейзенберга гласит: если мы измеряем координаты элементарной частицы, ска­жем — электрона, то её импульс (произведение массы на скорость) становит­ся неопределённым, и наоборот. Следовательно, рассчитать ''возмущение", вызванное вмешательством в процесс, уже не удаётся. Не удаётся не потому, что мы не знаем, как это сделать, а потому, что это принципиально невоз­можно. То есть элементарная частица, если бы она умела говорить, сама о се­бе не могла бы сказать, какая у неё скорость в тот момент, когда объявляет свою координату. Именно эта особенность эксперимента в области микромира в своё время породила острые дискуссии в философии науки, пока учёные не осознали, что при переходе к очень малым пространственным и времен­ным промежуткам явления природы обретают совершенно непривычные свойства, какие не встречались прежде. Осознание этого момента существен­ным образом повлияло на методы научного исследования: выяснилось, что каждый метод не абсолютен, то есть имеет границы своей применимости.

Теоретические методы

Теоретические методы, в отличие от эмпирических, не нуждаются в прямом приборном обеспечении.

Главным средством этих методов является логиче­ская работа мысли, подчиняющаяся определённым правилам, выработанным за всю многовековую историю научных исследовании. К теоретическим ме­тодам относятся следующие.

Абстрагирование — отвлечение от тех свойств изучаемого объекта, ко­торые в данном исследовании не играют существенной роли. Синонимом аб­страгирования является термин "идеализация". Например, в понятии "математический маятник" мы отвлекаемся от веса нити, её растяжимости, и мыс­ленно заменяем колеблющееся на нити тело "материальной точкой", то есть пренебрегаем размерами этого тела. Такая идеализация становится возмож­ной потому, что перечисленные свойства мало влияют на основные характе­ристики процесса колебаний.

Индукция — вывод общего следствия из частных посылок, и дедукция — выведение частных следствий из общих положений. Индукция может быть полной и неполной. Полной называется индукция, когда исследованы абсо­лютно все объекты, свойства которых обобщаются. Например, изучив все ме­таллы, мы приходим к заключению, что все металлы электропроводны. Если бы мы сделали это же предположение, изучив лишь часть металлов (как и было в истории науки), то это была бы неполная индукция.