Смысл отрицания произвольного понятия Р хорошо передается графической схемой (рис.11), где прямоугольником обозначен универсальный класс, а результат операции показан штриховкой. Эта же схема делает наглядной закономерную зависимость, выражаемую формулой не не-P=P. Формула показывает объемное равенство некоторого понятия с результатом его двойного отрицания (так называемый закон двойного отрицания для классов). И действительно, исходному пункту; поэтому двойное отрицание иногда называется мнимым (дважды отрицая данное понятие, мы, по существу, его не отрицаем).
Сложение и умножение понятий.
Из операций с двумя исходными понятиями (или большим их числом) следует выделить логическое сложение и логическое умножение. Результат сложения понятий Р и Qбудем называть их логической суммойи обозначать P+Q, а результат умножения тех же понятий назовем их логическим произведениеми обозначим Р•Q.Вобъём понятия Р+Qвходят те объекты, каждый из которых принадлежит хотя бы одному из исходных классов. Иными словами, х принадлежит классу Р+Q, если истинно суждение х есть Р или Q (где союз «или» употребляется в неисключающем его значении). В объём понятия P•Q входят те объекты, каждый из которых принадлежит обоим исходным классам. Иначе говоря, х принадлежит классу Р•Qесли истинно суждение х есть P и Q, где союз «и» фиксирует одновременное вхождение х в данные классы.
Различие между этими операциями иллюстрируют графические схемы. На рисунках 12 - 15 показана логическая сумма, а на рисунках 16 - 19 - логическое произведение понятий Р и Qс учетом четырех известных нам видов отношений. Лишь для равнообъемных понятий итоги сложения и умножения совпадают, в трех других случаях классы Р+Qи Р•Q принципиально различны.
Это и понятно, поскольку операция сложения, в сущности, объединяет исходные множества, тогда как операция умножения образует класс, соответствующий области их пересечения. Уместно подчеркнуть, что результат умножения родового и видового понятий объёмно равен видовому, а результат сложения тех же понятий - родовому (см. рис.17 и 13). Если исходные понятия внеположенные, то их сложение образует класс, полностью включающий оба множества (см. рис.15); логическое произведение тех же понятий ведет к образованию нулевого класса (см. рис.19).