Смекни!
smekni.com

О принципиальной возможности аксиоматической перестройки произв0льн0й научной теории (стр. 3 из 5)

Что означает применение мысленного эксперимента в свете вышеразобранного отношения между понятием абстрактного объекта и понятием понятия? Оно может означать одно из двух:

I/ В "мысленном эксперименте" мы оперируем только теми свойствами абстрактных объектов, которые определены аксиомами системы, однако делаем это не в форме дедуктивных построений, отправляясь от аксиом, а в форме "мысленного эксперимента", и де-лаем так по той причине,; что теория еще не достроена полностью аксиоматически. Лучшим примером здесь служит как раз пример, дан-ный самим В.С.Степиным для иллюстрации "мысленного эксперимента" /только, естественно, В.С.Степин трактует его иначе и даже проти-воположно/. А именно, пример со ссылкой на "Начала" Евклида, в которых отец аксиоматического метода, создавший "эталонную" акси-оматическую теорию, прерывает свои чисто дедуктивные построения таким, например, рассуждением, как довазательство тождества гео-метрических фигур методом наложения их друг на друга(7). Дело здесь в том, что "Начала" Евклида хоть и являются началом применения аксиоматического метода, но не являются строго аксиоматической теорией и в "новое время" аксиоматика евклидовой теории многократно уточнялась различными авторами, а более всего Д.Гильбертом(8), в "Основаниях геометрии" которого она представлена в современном виде. В этой же книге все те выводы /теоремы/ которые сам Евклид доказывает не совсем строго /и в частности прибегает к "мысленному эксперименту/ получены уже строго дедуктивно на основании аксиом. В частности упомянутое доказательство Евклидом тождества геомет-рических фигур выводится дедуктивно из аксиом так называемой группы конгруентности, содержащих утверждение типа, что, если два отрезка конгруэнтны третьему, то они конгруентны между собой и т.п.

2/ Мы оперируем в мысленном эксперименте со свойствами абстрак-тных объектов, которые не зафиксированы в аксиомах теории. Это рав-носильно прибавлению новых аксиом к прежде принятым и, следователь-но, видоизменению задачи и ссужению области действия прежней теории. Принципиальная аксиоматичность при этом, естествен-но, сохраняется. Хорошие примеры этому варианту мысленного экспе-римента в изобилии содержатся в книге самого В.Степина (только трактует он их неправильно). И прежде всего это все "частные теоретические схемы" /терминология В.Сте-пина/, развиваемые на базе некой глобальной теории типа ныотоновской механики, максвеловской электродинамики и т.п. Это теория твердого тела, гидродинамика, газодинамика - для механики Ньютона, и элек-тростатика, теория тока в проводнике, теория электромагнитной ин-дукции и т.д. - для электродинамики Максвелла.

Хотя генетически или исторически они могут возникать и до возникновения общей теории, что и было, например, с большинством из них в случае электродинамики Максвелла, но в окончательном виде они включаются в большую теорию, как частные выводы из нее, однако, выводы, полученные не чисто дедуктивно из законов-аксиом базовой теории, а с помощью также мысленного эксперимента, в процессе которого принимаются во внимание, помимо свойств абстракт-ных объектов, учитываемых в аксиомах базовой модели, также новые свойства, что, как сказано выше, равносильно введению новых, дополнительных понятий и аксиом и сужению задачи на новую область. Например, теория твердого тела строится по прежнему на всех 3-х законах Ньютона и законе сложения скоростей Галилея и представлении об абсолютности времени /равносильном аксиоме/, но также на аксио-ме о неизменяемости твердым телом его формы под действием силы, аксиоме описывающей новое свойство абстрактных объектов, во всем остальном подпадающим под аксиомы /определения, даваемые этими аксиомами/ базовой теории Ньютона. Этот пример помогает нам уточнить смысл выражения "расширение теории" употребленного выше. Это не расширение за пределы действия прежних аксиом, а наоборот, сужение области действия теории. Последнее может быть получено только изменением части этих аксиом, к тому же не изоморфным - заменой аксиом на выводы из них, как в случав перехода от механики Ньютона к механике Гамильтона или Герца, а таким, при котором новые аксиомы не могут быть получены из прежних дедуктивно, примером чему служит переход от механики Ньютона к механике Эйнштейна. Поэтому может быть вместо "расширение" здесь лучше было бы употребить термин "углубление" или "детализация". Однако, как уже сказано, дело не в терминах, т.е. не в словах - наименованиях, которые мы приклеиваем на понятия, как ярлыки /причем ярлыков, в принципе, меньше чем понятий и мы вынуждены клеить одинаковые ярлыки на разные понятия/ и которые не могут нам дать однознач-ного определения последних. Дело, в развернутых и по возможности однозначных определениях их. И в данном случае, я повторяю, речь идет о таком дополнении к базовой системе аксиом, при котором базовые аксиомы продолжают действовать во всей области действия новой /новых/, в то время как новая действует только в части области действия базовых, в той части, на которую она и осущест-вляет это "расширение". В частности аксиому твердого тела мы не применяем ни в гидродинамике, ни в прочих теориях сплошных сред, ни в теории осцилятора, ни в теории движения свободной материальной точки и т.д.

Еще пример на этот вариант "мысленного эксперимента" - это использование в теории тока, рассматриваемой как часть электро-динамики Максвелла, понятия проводника со свойствами проводимости или сопротивления. Эти свойства не рассматриваются в базовой теории, основные понятия которой - это напряженности электромаг-нитного поля Е и Н, а также заряд и сила. Новые свойства проводника – это новые аксиомы. Причем, они не применяется во всей об-ласти действия электродинамики Максвелла, скажем в электростати-ке или магнитостатике.

Следующая проблема, поднятая В.Степиным и требующая здесь разъяснения, связана с одним из отличий методов построения теории в современной физике от методов классической физики. /Речь идет разумеется о генезисе/. Суть его такова:

В классической физике сначала создавались частные теории /"теоретические схемы" но В.С.Степину/ и затем на их основе обобщающая теория, как, например, электродинамика Максвелла на основе электростатики Кулона, магнитостатики того же Кулона, Био-Савара и Ампера, теории электромагнитной индукции Фарадея и т.д. В свою очередь каждая частная теория строилась на основе обобщения экспериментального материала добытого до того. Правда, как отмечает В. Степин, законы этих частных теорий не получались в виде дедуктивного вывода из экспериментальных фактов, а лишь показывалось, что они и выводы из них этим фактам соответствуют. Но, как мы знаем, это обстоятельство полностью соответствует аксиоматическому подходу, поскольку все законы Кулона, Ампера и т.д. есть не что иное как аксиомы, соответствующих частных теорий, а аксиомы, как известно, не доказываются в рамках аксиоматичес-кой теории, т.е. они и не должны выводиться дедуктивно из эмпи-рических фактов, зато должны сами и /или/ выводы из них соответ-ствовать эмпирие, что и имело место. Аналогично строилась и обобщающая теория, только "фактами" для нее служили законы и выводы из них частных теорий. Вся эта картина, таким образом, прекрасно вписывается в аксиоматический подход, но вот в современной физике эта идилия по видимости нарушается.

В связи с обстоятельствами, которые хорошо иллюстрирует в своей книге В.Степин, избавляя меня от необходимости повторять их, в современной физике описанная выше картина зачастую обра-щается,- по крайней мере частично, т.е. на уровне построения част-ных теорий. А именно, частная теория начинает создаваться до того, как накоплен достаточный экспериментальный материал, причем в основу ее ложится математическая гипотеза /вместе с соответст-вующим математическим формализмом/, заимствованная по аналогии из смежной, уже развитой области физики. А затем начинается про-цесс уточнения понятий, которые вместе с формализмом заимствованы из смежной области, установление соответствия этих понятий /и вы-водов относительно них, вытекающих из гипотезы/ имеющемуся экс-перименту и постановка новых экспериментов под направляющим воз-действием гипотезы. Уточнение сути этой фазы исследования также как и выяснение возникающей здесь проблемы, требующей аксиомати-ческого объяснения, лучше всего разобрать на примерах, на которых концентрируется сам B.Степин.

Первый такой пример - это волновая теория электрона Дирака. По аналогии с волновыми теориями для других областей Дирак написал 4 дифференциальных уравнения для 4-х волновых функций. Трактовку переменных в этих уравнениях он поначалу также принял по аналогии. Затем, решая эти уравления, получил выводы, которые стал проверять на соответствие эксперименту и обнаружил ряд парадоксов таких, например, как вывод, гласящий, что "Электрон без всякого внешнего воздействия, самопроизвольно может излучать два кванта, после чего исчезает"(9) и т.п.

Тогда Дирак изменил физическую трактовку переменных в своих уравнениях /не меняя уравнений/ и получил на сей раз и соответст-вие эксперименту и отсутствие парадоксов.

Другой пример - это процедуры Бора-Розенфвльда при создании ими квантово-релятивистской теории электромагнитного поля. По аналогии с Дираком Бор и Розенфельд использовали математическую гипотезу, перенеся на новую область уравнения электродинамики Максвелла. Но они пошли дальше Дирака методологически, выработав процедуру уточнения смысла понятий переменных в этих уравнениях в приложении их к новой области, процедуру, позволившую значитель-но сократить количество потребного действительного эксперимента, заменив его мысленным. Эту процедуру В. Степин называет "конст-руктивным обоснованием" теоретических объектов гипотезы и она вытекает из того факта, что привязка понятия к действительности, его "надеваемость" на эту действительность связана с принципиаль-ной измеримостью тех свойств, которые лежат в основе определения понятия. Проверять же принципиальнуго возможность измерения можно и в мысленном эксперименте, а не обязательно в активном. Если такой измеримости нет, то понятие неконструктивно, а пользование им может /по В.Степину, а как по мне то и должно/ привести к парадоксам. Используя этот метод Бор и Розенфельд уточнили изна-чальные значения понятий переменных в уравнениях Максвелла, в частности, заменив для новой области значения полевых переменных Е и Н, в уравнениях Максвелла, бывшие значениями электрической и магнитной напряженности в точке поля, на напряженности, усредненные по некоторому элементарному объему в окрестностях этой точки, величина которого /объема/ была связана со свойствами так называемого пробного тела, и доказали в мысленном эксперименте /мысленно построили соответствующий эксперимент,который при желании можно было осуществить и физически/ принципиальную измеримость этих новых величин в новой области. В то время как прежние величины /точечные/ в новой области были неизмеримы, в чем и состоял парадокс, отмеченный Л.Ландау и Р.Пайерлсом и поставившей в тупик физику в тот период.