Смекни!
smekni.com

С чем идет современная логика в XXI век? (стр. 3 из 6)

Объяснение второе. Элементами множества B являются элементы некоторых других множеств и, в частности, все элементы множества A. Например, каждое четное число есть элемент множества всех целых чисел или каждый жираф есть элемент множества всех животных.

Но тогда получается, что в обоих случаях выражение "множество A является элементом множества B" не имеет смысла. В первом случае оказывается, что элементом множества B является не само по себе множество A, а его имя (или обозначение, или ссылка на него). В этом случае неявно устанавливается отношение эквивалентности между множеством и его обозначением, что неприемлемо ни с точки зрения обычного здравого смысла, ни с точки зрения несовместимой с чрезмерным формализмом математической интуиции. Во втором случае оказывается, что множество A включено в множество B, т.е. является его подмножеством, но не элементом. Здесь тоже явная подмена понятий, поскольку отношение включения множеств и отношение принадлежности (быть элементом множества) в математике имеют принципиально различный смысл. Знаменитый парадокс Рассела, подорвавший доверие логиков к понятию "множество", основан на этой нелепости - в основе парадокса лежит двусмысленная предпосылка о том, что множество может быть элементом другого множества.

В свое время (1925 г.) один из пионеров компьютерной революции Дж. фон Нейман предложил различать два типа объектов: "множества" и "классы". В его логической системе классы отличаются от множеств тем, что не могут быть элементами других классов [11, стр. 46]. Однако в своей системе он уделил основное внимание "множествам", для которых такое явно двусмысленное соотношение считается допустимым [12].

Возможен еще один вариант объяснения. Пусть множество A задано простым перечислением его элементов, например, A = {a, b}. Множество B в свою очередь задано перечислением некоторых множеств, например, B = {{a, b}, {a, c}}. В данном случае кажется очевидным, что элементом B является не имя множества A, а само множество A. Но даже в этом случае элементы множества A не являются элементами множества B, и множество A здесь рассматривается как неразделимая совокупность, которая вполне может быть заменена его именем. Но если бы мы считали элементами B все элементы содержащихся в нем множеств, то в этом случае множество B было бы равно множеству {a, b, c}, и множество A в этом случае было бы не элементом B, а его подмножеством. Таким образом, получается, что этот вариант объяснения в зависимости от нашего выбора, сводится к ранее перечисленным вариантам. А если никакого варианта выбора не предложено, то получается элементарная двусмысленность, которая часто приводит к "необъяснимым" парадоксам.

Можно было бы не уделять особого внимания этим терминологическим нюансам, если бы не одно обстоятельство. Оказывается, что многие парадоксы и несообразности современной логики и дискретной математики являются прямым следствием или подражанием этой двусмысленности. Например, в современных математических рассуждениях часто используется понятие "самоприменимость", которое лежит в основе парадокса Рассела. В формулировке этого парадокса под самоприменимостью подразумевается существование множеств, которые являются элементами самих себя. Такое утверждение сразу же приводит к парадоксу. Если мы рассмотрим множество всех "несамоприменимых" множеств, то окажется, что оно является одновременно "самоприменимым" и "несамоприменимым". От противоречия легко избавиться, если отказаться от утверждения, что множество (но не его имя, обозначение или определение) может быть элементом какого-то множества. И в соответствии с этим выражение "множество есть элемент множества" рассматривать как неудачную метафору для одного (и только одного!) из сформулированных выше вариантов объяснения.

Нашлись горячие головы, которые из противоречивости парадокса Рассела пришли к выводу о необходимости запрета любых "самоприменимых" конструкций. Такое же мнение в свое время высказал и сам Рассел. Но оказывается в математике вполне возможны и даже необходимы "самоприменимости" в другом смысле, которые не влекут "неразрешимых" парадоксов. Элементарным примером является "самоприменимость" отношения включения множеств: в аксиомах алгебры множеств предусматривается, что любое множество включено в самого себя. Но здесь множество содержится в себе не как элемент, а как множество (точнее, как "нестрогое подмножество"). Однако при этом никакого парадокса не возникает, так как "несамоприменимых" в этом смысле множеств просто не существует и для "самоприменимости" нет альтернативы.

Другим примером "самоприменимости" является структуры списков, которые часто используются в современном программировании и в системах искусственного интеллекта. Грубо говоря, списки - это некоторые структуры, связанные друг с другом системой ссылок. С помощью этих ссылок можно "путешествовать", переходя от одной структуры к другой. Для списков вполне допустима (а во многих системах искусственного интеллекта даже необходима) ситуация, когда в системе ссылок одного списка встречается ссылка на тот же самый список или ссылка из списка нижнего уровня на головной список. Здесь просто необходимо знать о существовании такой необычной "самоприменимой" ссылки, чтобы не хвататься за голову в ситуации, когда программа обработки списков при определенных условиях (порой из-за небрежности программиста) входит в бесконечный цикл.

Можно отнести к категории "самоприменимых" также некоторые рекурсивные функции и процедуры. Например, известный из школьной математики факториал

n! = 1Ч 2Ч ... Ч (n-2)Ч (n-1)Ч n

можно определить как рекурсивную функцию F с помощью двух равенств:

F(1) = 1; F(n+1) = (n+1)F(n).

Такое определение не совсем привычно для человека, несведущего в математике, но является вполне корректным и во многих случаях даже полезным не только для теории, но и для практики. Необычность его заключается в том, что одна и та же функция F здесь используется в левой и в правой части второго равенства. Но "самоприменимость" здесь можно рассматривать как метафору, поскольку в разных частях равенства эта функция используется с разными значениями аргумента. К тому же в записи рекурсивной функции равенство (=) означает не отношение, а известную программистам операцию присваивания. Примером такого "равенства" является кажущаяся абсурдной запись "X=X+1", которая означает, что значение X в результате операции присваивания увеличивается на единицу.

Однако эти и многие другие примеры "самоприменимости" не имеют ничего общего с "самоприменимостью" по Расселу, в которой "множество" без всякого пояснения становится "элементом". "Множество" как целое - это первичное свойство некоторых "элементов". Мы можем даже не знать других свойств выделенного множества. Но раз понятие "множество" используется как свойство, то отождествление его с сущностями ("элементами"), характеризующимися этим свойством, сразу же приводит к двусмысленности.

К сожалению, такая терминологическая чехарда в современных теоретических рассуждениях по основаниям математики и математической логики встречается весьма часто. Еще в начале нашего века А. Пуанкаре отметил, что в чрезмерной формализации математики, которой увлеклись многие приверженцы научной школы Д. Гильберта, часто содержатся "скрытые" определения и двусмысленности [2]. Тогда они лишь намечались и можно только восхищаться прозорливости Пуанкаре. Но сейчас они проявились в полной мере, и свидетельствуют о "скрытой диверсии" в логике и в основаниях математики. Вместе с тем, если такая "диверсия" допускается для основополагающих понятий математики, то она оказывается объектом для подражания применительно ко многим частным логическим и математическим понятиям. И подобные "диверсии" (или мемы) размножаются в разных областях знаний, если не в геометрической, то, по крайней мере, в арифметической прогрессии.

Одним из разрушительных последствий указанной "диверсии" стала все возрастающая неустойчивость многих математических понятий - многие исторически сложившиеся и строго определенные математические термины коренным образом меняют свое значение в зависимости от приверженности к определенной научной школе. И это относится не только к сугубо специальным терминам, но и к таким, которые лежат в основе современной математики. Вот лишь некоторые из них: "отношение", "соответствие", "отображение", "декартово произведение множеств", "алгебраическая система". Речь в данном случае идет не просто о разных подходах к определению этих терминов, а о том, что в разных авторитетных источниках этим терминам соответствуют принципиально различные математические структуры. Поневоле напрашивается вывод, что интенсивная дифференциация математики обусловлена в основном не детализацией и расширением ее разделов, а искусственно создаваемыми терминологическими барьерами между различными научными школами.

Сейчас в рамках искусственного интеллекта идет интенсивная компьютеризация знаний, которая к тому же сопровождается многочисленными рекламными заверениями в том, что компьютерная логика более точна, чем наша обычная человеческая логика. Но если в компьютер заложить ложные или противоречивые знания и не сформулировать точных условий ложности или противоречивости, то компьютер вряд ли распознает эту ошибку. Например, в арифметических операциях компьютер не делит число на нуль не потому, что он знает, что такое деление некорректно, а потому, что в его арифметико-логическом блоке встроена инструкция, запрещающая такое деление. Чтобы смоделировать на компьютере двусмысленную ситуацию с отношением принадлежности, достаточно ввести в его память два класса объектов: "множества" и "элементы" и сформировать из них структуру (матрицу), в которой задано отношение между этими объектами. С точки зрения "логики" самого компьютера совершено неважно, содержит ли эта матрица направленные связи только между парами типа "элемент - множество" или же в эту матрицу добавлены некоторые связи между парами типа "множество - множество". Ведь структурные свойства отношения принадлежности компьютеру не заданы, поскольку эти свойства пока что не определили однозначно и точно сами люди.