Смекни!
smekni.com

Логический анализ E-структур с помощью графов (стр. 2 из 3)

При разработке и реализации алгоритмов и программ анализа рассуждений используется не наглядное изображение E‑структуры, а ее представление в виде некоторых соответствий. Эти соответствия состоят из множества пар, в которых первым элементом является литерал, а вторым элементом – множество литералов. Например, пары (

, {A, C}) и (C, Æ) могут быть элементами такого соответствия. Число таких пар в каждом соответствии равно числу литералов в структуре. Одним из таких часто используемых соответствий является соответствие "Верхние конусы", которое содержит множество пар типа(литерал, верхний конус этого литерала).

Еще одним возможным соответствием является "CT-замыкание". Оно состоит из множества пар вида(литерал, множество литералов, достижимых из этого литерала).

В математике и логике инвариантом системы принято считать некоторое свойство, остающееся неизменным при выполнении определенных преобразований в системе. Для E‑структур примем в качестве такого преобразования построение ее CT-замыкания, т.е. добавление к исходным посылкам всех возможных полученных с помощью правил вывода следствий.

Оказывается, что к одному и тому же CT-замыканию нередко приводятся разные на первый взгляд системы исходных посылок. В то же время может оказаться, что некоторые незначительно отличающиеся друг от друга системы посылок имеют принципиально отличающиеся CT-замыкания. Все это позволяет считать CT-замыкание некоторой обобщающей характеристикой (логическим инвариантом) рассуждения, заданного E‑структурами.

Предположим, что E-структура R задана своими исходными посылками. Выделим какую-либо из этих посылок (например, A®B) и представим, что вместо нее в E-структуру R введена в качестве посылки ее контрапозиция (т.е. посылка

®
). В этом случае суждение A®B будет уже не исходной посылкой R, а ее следствием, но в CT-замыкании структуры R обе эти посылки будут присутствовать и в первом, и во втором случае. При этом окажется, что и все CT-замыкание E-структуры R при такой замене останется неизменным.

Вполне возможна также ситуация, когда в исходных посылках E-структуры присутствует посылка, которая является следствием каких-то других ее посылок. В процессе вывода мы эту посылку получим, но она тут же будет изъята, так как при выводе мы обязательно проверяем новизну следствий и оставляем только те суждения, которых до этого не было в наличии. И опять же CT-замыкание таких, на первый взгляд разных, структур будет одним и тем же. И если в первой структуре имеются коллизии, то эти коллизии сохранятся, если мы вместо некоторых посылок введем их контрапозиции или добавим в посылки суждения, которые являются следствиями этих посылок.

Таким образом, если нас интересуют в E-структуре не следствия из ее исходных посылок, а вся структура в целом с коллизиями или без оных, то мы можем считать инвариантом E-структуры ее CT‑замыкание.

Возьмем в качестве примера сорит Кэрролла.

Все опытные люди компетентны;

Дженкинс всегда допускает грубые ошибки в работе;

Все компетентные люди не допускают грубых ошибок в работе.

Сделаем в нем следующие изменения:

1) первую и третью посылки заменим на их контрапозиции;

2) добавим во вторую посылку одно из следствий данной структуры;

3) изменим порядок посылок.

Тогда мы можем получить, например, такую последовательность исходных посылок:

Дженкинс некомпетентен и всегда допускает грубые ошибки в работе;

Каждый, кто допускает грубые ошибки в работе, некомпетентен;

Все некомпетентные люди неопытны.

Ясно, что посылки здесь отличаются, и следствия соответственно будут другими. К тому же в первой посылке не один, а два предиката суждения. Но если мы, используя одни и те же обозначения терминов, построим для каждого из этих случаев CT-замыкание и сравним их, то мы увидим, что они совпадают.

Отметим одну особенность E-структур. В них результат вывода не зависит от того, в каком порядке введены или перечислены исходные посылки. Этим они отличаются от Аристотелевых силлогизмов, в которых тип силлогизма, а во многих случаях и его результат зависит от порядка перечисления исходных посылок. Для E‑структур порядок ввода посылок становится существенным в тех случаях, когда появляются какие-либо коллизии. Тогда имеет смысл выделить из всего множества посылок такой E-структуры наиболее сомнительные и вначале исследовать систему без этих посылок. А потом уже на основании полученных результатов корректировать сомнительные посылки. Еще один вариант управления порядком ввода посылок мы рассмотрим в разделе о неполных рассуждениях.

В качестве упражнения рассмотрим две E-структуры E1 и E2, заданные исходными посылками:

E1: X®(Y,

); Y®
; Z®
;

E2: X®Y; Z®(

,
); V®(
,
).

Определите с помощью построения и сравнения CT-замыканий этих структур, являются ли они инвариантными.

Существует, оказывается, еще один и к тому же во многих отношениях более удобный инвариант E-структур. Посмотрим внимательно на рисунок 3. На нем изображено CT-замыкание задачи из примера 6, представленное в виде направленных в одну сторону (слева направо) путей. Обратите внимание, что некоторые дуги соединяют литералы, между которыми имеется другой более длинный путь. Дуги, обладающие таким свойством, представляют следствия, полученные с помощью правила транзитивности. Если убрать из рисунка все такие дуги, то мы получим простые пути типа C®

®
®
и T®R®S®
, из которых можно восстановить все CT-замыкание, используя при этом в качестве правила вывода только правило транзитивности.

Пути такого типа называются в упорядоченных структурах максимальными путями. В произвольных E-структурах их может быть больше двух, они могут самым причудливым образом пересекаться друг с другом, но все они обладают двумя главными свойствами:

1) из совокупности этих путей можно полностью восстановить CT-замыкание E-структуры, используя только правило транзитивности, и

2) ни одна связь в этих путях не может быть получена из других связей с помощью правила транзитивности.

Определение 2. Диаграммой Хассе E-структуры называется граф, содержащий только связи, включенные в максимальные пути и не содержащий никаких связей, полученных по правилу транзитивности. Диаграмма Хассе E-структуры является ее инвариантом.

Таким образом, мы можем любую E-структуру представить не только с помощью CT‑замыкания, но и с помощью диаграммы Хассе. При этом структура становится более наглядной. Попробуем оценить, сколько лишних связей мы используем, если представляем ее в виде CT-замыкания. Для простоты представим, что наша E-структура содержит два максимальных пути, и каждый из этих путей содержит N базовых терминов. Тогда общее число связей в диаграмме Хассе этой структуры равно 2(N-1). В CT-замыкании той же самой структуры будет содержаться уже N(N-1) связей. Определим, сколько связей будет «сэкономлено» при использовании диаграммы Хассе. Обозначим число таких "лишних" связей буквой K. Тогда

K = N(N-1) -2(N-1) =

-3N + 2.

Выражение

-3N + 2 является полиномом второй степени от N. Это означает, что при увеличении числа N количество «сэкономленных» связей K возрастает в квадратичной зависимости. Так, при N = 4 число связей в диаграмме Хассе и в CT‑замыкании будет равно соответственно 6 и 12, но если N = 10, то соотношение будет уже другим: 18 и 90. Разница и соответственно «экономия» будут уже существенными.

У диаграммы Хассе имеется еще одно интересное свойство, которое можно практически использовать при анализе E-структур и соответственно при анализе моделируемых с их помощью рассуждений. Это свойство определяется следующей теоремой. Пусть имеется некоторая E-структура G, заданная определенными суждениями (посылками). Граф структуры G, который получается после применения правила контрапозиции (правила C) ко всем посылкам обозначим GC, а диаграмму Хассе этой структуры (если мы ее каким-то способом сумели построить) – GH. Тогда соблюдается следующее соотношение:

Теорема 1. Для любых E-структур соблюдается GHÍGC.

Это означает, что после того, как будут построены контрапозиции исходных посылок, в полученном графе будут в наличии все дуги диаграммы Хассе. Хотя не исключено, что при этом в графе будут присутствовать и лишние для диаграммы Хассе дуги, которые мы можем легко распознать и удалить.

Но наша «экономия» лишних связей на этом не заканчивается. Можно, оказывается, любую E-структуру представить числом связей, в два раза меньшим, чем число связей в диаграмме Хассе. Обратите внимание, что в диаграмме Хассе все связи «ходят парами»: суждение и его контрапозиция. А почему бы нам каждую такую пару не представить всего одним суждением? Ведь все равно изъятое суждение мы получим, применив к оставшемуся суждению правило контрапозиции.