Смекни!
smekni.com

Понятия и отношения между ними (стр. 2 из 6)

Таким образом, термин «понятие» употребляется в более широком, чем указано выше, смысле. Так, например, «дерево» – это понятие, «человек» – это понятие, независимо от того, связываются или нет с этими словами знания о том, что представляют собой обозначаемые ими предметы, выделены ли в этих предметах признаки, составляющие основу их обобщения, или имеются более или менее ясные, нерасчлененные интуиции.

Иначе говоря, понятием в этом значении термина называют просто любой предмет, ставший объектом мысли (следовательно, названный и мыслимый в той или иной степени абстрактности). Часто в философии прошлого, для этого употреблялся термин «идея». Например, Д. Локк, используя этот термин, указывает, что под ним подразумевается «все, что является объектом мышления человека». Оперируя таким понятием, человек может не иметь о нем понятия. Это парадоксальное на первый взгляд утверждение означает лишь то, что дважды употребленный в этой фразе термин «понятие» имеет в одном и другом случаях разные значения. Так, А.И. Герцен в письме «Эмпирия и идеализм» говорит о существовании в науках понятий, которые еще не понятны. Однако во всех случаях, где необходимо точное понимание смыслов утверждений, и особенно если возникает надобность в доказательствах наших высказываний, мы не можем ограничиваться интуициями. В подобных ситуациях необходимы понятия в строгом смысле этого слова, которых мы и будем придерживаться.


1.2 Логическая структура и основные характеристики понятия

Совокупность признаков, по которым обобщаются предметы в понятии, называется содержанием данного понятия, точнее было бы сказать основным содержанием. Далее, мы будем различать основное и полное содержание понятия и в связи с этим различать само понятие просто как охарактеризованное выше обобщение предметов, то есть как смысл общего имени и как некоторую систему знаний.

При корректном способе образования понятия основное содержание его – это совокупность признаков, которые все вместе достаточны, а каждый необходим для того, чтобы выделить данный класс предметов, то есть отличить эти предметы от других. Например, добавление перпендикулярности диагонали к содержанию указанного понятия квадрата делает совокупность избыточной; данный признак является производным – выводимым из основного содержания понятия квадрата.

Класс обобщаемых в понятии предметов называется его объемом. Мыслимые (обобщаемые в понятии) предметы – носители признаков, составляющих содержание понятия, – суть элементы объема этого понятия.

Части объема – это виды предметов, обобщенных в понятии, и выделение их означает выявление определенных различий внутри класса предметов. Обобщая предметы в понятиях, как было сказано, мы отвлекаемся от всяких различий внутри соответствующего класса предметов. Но когда понятие образовано, возникает обычно необходимость выявления их уже на основе полученного обобщения. Это выявление осуществляется в форме особой операции, называемой делением понятия, и представляет собой определенную конкретизацию данного понятия [2, с. 185].

Утверждение о том, что некоторый предмет а составляет элемент класса К, представляющий объем некоторого понятия, записывается в виде а

К (
– знак отношения принадлежности предмета классу). Обозначением утверждения о том, что некоторый класс предметов К0 является частью (подмножеством) некоторого класса К служит: К0
К. «
» – знак включения класса в класс, когда К0 и К различны; когда же не исключается, что К0 совпадает с К, употребляется знак
.

Имеется связь между этими отношениями: утверждение

К0

К

Ясно, что если а

К, где К – объем некоторого понятия, то а обладает всеми признаками, составляющими содержание этого понятия и наоборот.

Выше была указана совокупность признаков, составляющая содержание понятия «студент». Объем этого понятия есть класс всех людей, обладающих этими признаками, то есть класс всех тех, кого мы называем студентами. Отдельные люди этого множества – элементы его объема. Частями объема являются, например, множество студентов технических и гуманитарных вузов, выпускников и начинающих обучение и т.д. Следует обратить внимание на то, что объем понятия в отличие от содержания не является частью понятия как мысли. Он представляет собой класс реально или, по крайней мере, независимо от понятия существующих объектов. Указание на объем понятия при его характеристике есть указание именно на то, к чему относится данное понятие, на то, что обобщается в нем.

Для понимания структуры понятия существенно учитывать, что выделение мыслимого в нем множества предметов осуществляется всегда в пределах некоторого более широкого класса. Интересующие нас предметы мы мыслим в понятии как вид предметов некоторого рода, как нечто особенное пределах чего-то общего. Так, треугольники мыслятся как вид плоских геометрических фигур; деревья – как вид растений; хозрасчет – как вид способов (методов) ведения хозяйства и т.д.

В соответствии с этим среди признаков, составляющих содержание понятия, выделяются родовые и те, что составляют видовые отличия мыслимых в понятии предметов. Так, например, в формулировке понятия квадрата: «Четырехугольник с прямыми углами и равными сторонами» или более развернуто: «Плоская, замкнутая, ограниченная четырьмя равными сторонами фигура, все стороны которой равны и утлы прямые» – слова «плоская, замкнутая, ограниченная четырьмя сторонами фигура» указывают родовые признаки понятия, а «прямоугольность» и «равносторонность» составляют видимое отличие «квадрата», именно то, что выделяет квадраты в множестве четырехугольных геометрических фигур. Род понятия составляет субстанционная часть, а видовое отличие – его атрибутивная часть.

Вместе с тем указанное разделение признаков на родовые и видовые не является абсолютным. В зависимости от задач, с которыми связано образование понятия, в качестве рода может быть взят один или другой, более широкий класс. Те же квадраты можно мыслить и как вид четырехугольников, и как вид замкнутых плоских геометрических фигур, относя «четырехутольность» в таком случае к видовому их отличию, а также вид геометрических фигур вообще. В каждом из указанных случаев мы получим различные понятия об одних и тех же предметах, также возможно обобщение одних и тех же предметов в различных понятиях по различным совокупностям признаков вообще. Один и тот же класс треугольников может быть обобщен в понятиях «равносторонний треугольник» и «равноугольный треугольник» [2, с. 188].

Надо иметь также в виду, что элементами объема понятия могут быть отдельные предметы (индивиды) и некоторые системы объектов: пары, тройки и т.д. Вообще, элементами объема понятие могут быть системы, представляющие собой некоторые множества предметов с заданными на них отношениями в математике называемых структурами. Таковы, например, группы, составляющие предмет теории групп, решетки, булевы алгебры.

Необходимо заметить также, что совокупность признаков, составляющих видовое отличие понятия, можно и полезно мыслить как некоторый один признак, объединяющий все признаки в конъюнкцию. В таком случае видовое отличие представляется в виде некоторого предиката, либо одноместного, либо многоместного, – в зависимости от того, являются ли элементами объема понятия индивиды или системы предметов.

1.3 Закон обратного отношения между объемами и содержаниями понятий

Наряду с определением содержания понятия как совокупности признаков, возможна характеристика его как некоторого предиката. Поскольку предикат представляет собой высказывателъную форму, он выражает некоторую информацию о предметах, мыслимых в понятии. В силу этого представление содержания как предиката позволяет истолковать его как характеристику информативности понятия. Различение понятий по информативности существенно для выяснения многих аспектов при анализе этой формы мышления. Оно приводит, в частности, к устранению многих недоразумений, которые возникали в прошлом, в частности, в связи с известным в логике законом обратного отношения между объемами и содержаниями понятий. В распространенной формулировке он гласит: объем и содержание понятия находятся в обратном отношении: чем шире объем, тем уже содержание понятия, и наоборот. Более точно, имеется в виду отношение между объемами и содержаниями двух понятий хА(х) и хВ(х) с одним и тем же родом (область значений х – D).

Согласно закону, если объем одного из этих понятий шире объема другого, то содержания их находятся в обратном отношении.

Может быть принята и более общая формулировка: Если объем одного понятия составляет часть объема другого (с тем же родом), то содержание второго составляет часть содержания первого.