На рис. 2. показано изменение уровня сигнала на выходе дифференциального усилителя в зависимости от расстояния L2 от МСО до источника помехи при фиксированном расстоянии Lмежду МСО.
4. Особенности разработки и применения МСО
Как правило, конструкция активных МСО сложнее пассивных. При этом и массогабаритные характеристики активных МСО выше. Это объясняется прежде всего тем, что пассивные МСО работают в области низких и инфранизких частот часто без переноса спектра сигнала. Например, СОМ часто выполняют в виде катушки индуктивности с очень большим числом витков и сердечником из материала с возможно большей магнитной проницаемостью. Чувствительность СОМ пропорциональна количеству витков катушки, магнитной проницаемости сердечника и его длине. Все это приводит к увеличению массогабаритных характеристик СОМ.
Любую катушку индуктивности можно рассматривать как рамочную антенну. Действующую длину такой антенны можно вычислить по формуле
где X - длина волны; п - число витков катушки индуктивности; S -площадь витка.
Для рамки с сердечником можно записать:
где
- действующая длина рамочной антенны с магнитным сердечником; ца - относительная магнитная проницаемость антенны;где
- магнитная проницаемость сердечника; - коэффи-циенты, учитывающие зависимость между геометрическими размерами катушки и сердечника.
где ц - относительная магнитная проницаемость материала сердечника; Dc-диаметр сердечника; Ц-длина сердечника. Подставляя получим:
Проведем анализ с точки зрения зависимости lgc=f,
допуская: А.->оо, п-><» - рамка намотана в один слой.
В результате анализа можно придти к выводу, что при ц->оо длина антенны
Пусть ц-И, тогда
Проведем анализ с точки зрения зависимости lgc = f, допуская,что Lc = const.
В результате анализа можно придти к выводу, что при Dc->0 длина антенны
/эс ->0.
Пусть Dc->oo, тогда >дс -> «> ■
Проведем анализ с точки зрения зависимости lgc = f, допуская, что Dc = const, Dci= Dc/Lc.
Очевидно, что для инфранизкочастотного диапазона с целью увеличения уровня сигнала на выходе чувствительного элемента необходимо увеличивать ее число витков
и одновременно применять сердечник возможно большей длины из материала с возможно большей магнитной проницаемостью. Диаметр сердечника при его фиксированной длине заметного влияния на уровень сигнала не оказывает.
Активные МСО работают в области сравнительно высоких частот, что позволяет изготовить сам чувствительный элемент со сравнительно хорошими массогабаритными характеристиками, так как с увеличением частоты появляется возможность уменьшить индуктивность катушки чувствительного элемента. При этом за улучшение названных характеристик приходится платить усложнением конструкции чувствительного элемента, так как часто здесь используется несколько катушек индуктивности, разнесенных в пространстве.
Главное назначение МСО - поиск оружия. Важнейший параметр огнестрельного оружия, влияющий на уровень полезного сигнала как активных, так и пассивных МСО - остаточная намагниченность оружия. В то же время остаточная намагниченность оружия -это единственный параметр, определяющий уровень полезного сигнала пассивных МСО. Характерными местами расположения магнитных масс огнестрельного оружия являются область дула и, как правило, диаметрально противоположная ей область - до 50%. Однако уровень полезного сигнала существенно зависит и от амплитуды колебания оружия при его переноске. В качестве примера можно привести увеличение уровня полезного сигнала от автомата Калашникова примерно в 3...5 раз при его проносе мимо МСО с амплитудой колебания его дула примерно на 0,1 м с частотой около 1 Гц.
5. Структурная схема МСО
Рассмотрим структурную схему МСО на примере СОМ.
Наиболее распространенным ЧЭ СОМ является катушка индуктивности. Типичное значение сигнала, снимаемого с ЧЭ, - порядка десятков микровольт в полосе частот от 0,1 до 10 Гц.
Выбор полосы не случаен. Выше было отмечено, что главное назначение МСО - поиск оружия. В подавляющем большинстве случаев СО применяют для негласного контроля за пересечением вооруженными людьми контролируемой зоны.
Движение с оружием совершается в определенном диапазоне скоростей и с интервалом не менее 1 м. Кроме того, при ходьбе оружие совершает еще и колебательные движения. Другими словами, границы полосы пропускания с учетом только скоростей движения и интервала: FH=0,5 Гц; F„=2 Гц.
Очевидный запас по границам частотного диапазона необходим для более надежной работы МСО, что подтверждается практикой.
Назначение полосового фильтра ПФ - формирование заданной полосы частот. Одним из важных параметров является крутизна спада характеристики фильтра вне полосы пропускания. Обычно эта величина составляет не менее 40 децибел на октаву, т.е. при изменении частоты вне полосы пропускания в 10 раз сигнал на выходе ПФ уменьшается в 100 раз.
Назначение УНЧ - усиление сигнала, снимаемого с выхода ПФ, до величины, достаточной для надежной работы ПУ. Обычно эту величину принимают равной не менее 1 В. Таким образом, коэффициент усиления УНЧ должен быть порядка 105 раз.
Назначение ПУ - выдача сигнала логического уровня при достижении полезным сигналом уровня срабатывания ПУ.
Назначение ИУ - выдача сигнала "Тревога" при поступлении на его вход с выхода ПУ логического сигнала соответствующего уровня.
6. Основы теории разработки магнитометрического средства обнаружения
Как было сказано ранее, магнитометрические средства обнаружения применяют для выявления факта проноса на охраняемую территорию предметов с магнитными свойствами. В основу построения МСО могут быть положены три группы методов:
- с использованием феррозондов;
- с использованием пассивных катушек;
- квантовые измерители индукции.
В связи с тем, что феррозонды получают все более широкое применение при разработке МСО, рассмотрим теоретические основы этого метода.
Феррозондом называется устройство, чувствительное к внешним магнитным полям, главным образом постоянным и медленно изменяющимся, содержащее ферромагнитные сердечники и обмотки, распределенные по их длине.
От пассивных индукционных датчиков и ферритовых антенн феррозонды отличаются тем, что являются устройствами активного типа. Происходящие в них процессы всегда связаны с существованием двух полей - внешнего измеряемого поля и некоторого вспомогательного поля, образуемого за счет тока, протекающего в одной из его обмоток. Взаимодействие этих полей в объеме сердечников, изготавливаемых из легко насыщающихся магнитных материалов, например пермаллоя, приводит к появлению в другой обмотке электродвижущей силы, по величине которой и судят о напряженности внешнего поля.
По принципу действия феррозонды наиболее близки к магнитным усилителям. По существу они и являются магнитными усилителями, у которых управляющая электрическая цепь заменена разомкнутой магнитной цепью.
Существует довольно много типов и модификаций феррозондов. Все они отличаются друг от друга режимом работы, способом наложения вспомогательного поля, выбранной схемой и конструктивным исполнением. Эти отличия оказываются более или менее существенными в зависимости от диапазона и частотного спектра измеряемых полей, условий, в которых проводятся измерения, особенностей преобразования полезного сигнала в измерительной схеме. Однако феррозондам присущи и некоторые общие свойства.
Рассмотрим эти свойства на примере дифференциального феррозонда.
Дифференциальный феррозонд содержит два одинаковых пермаллоевых сердечника, выполненных в виде тонких стержней прямоугольного сечения, уложенных в специальные каркасы параллельно друг другу. Поверх каркасов нанесены первичные обмотки, включенные последовательно и образующие цепь возбуждения феррозонда. Эту цепь питают переменным током звуковой частоты. Кроме первичных обмоток имеется также общая вторичная обмотка, которая вместе с подключаемым к ней индикаторным прибором образует измерительную цепь.
В дифференциальном феррозонде первичные обмотки соединены таким образом, что протекающий в них ток iсоздает в объеме сердечников поля напряженности, равные по величине, но противоположные по направлению. При наличии внешнего поля Н0, направленного вдоль сердечников, в объеме одного из них действует разность напряженностей, в объеме другого - сумма.
Если сердечники идентичны, то можно записать:
где В' и 6'- индукции или плотности магнитных потоков в сердечниках.
ЭДС во вторичной обмотке, охватывающей оба сердечника,