Смекни!
smekni.com

Синергетика: различные взгляды (стр. 10 из 43)

По Хакену, переход от микроуровня описания к описанию в макроскопических переменных уже есть шаг в направлении целостного описания системы. На макроуровне методом редукции выделяются макроскопические переменные, определяющие динамику системы в областях неустойчивости, возникновения пространственно--временных структур или смены их типа --- параметры порядка. Понятие параметра порядка соответствует обмему принципу подчинения одних макропеременных другим --- одному из основных принципов самоорганизации [38].

Ю.Л.Климонтович отмечает, что процедуры усреднения, определяющие переход от микроописания к описанию в макропеременных, являются предметом статистической теории неравновесных процессов, тем самым выступающей в качестве фундамента синергетики [14].

Итак, в рамках предметного описания фиксируется, с одной стороны, целостная природа пространственно--временной самоорганизации, с другой --- неадекватность этой природе элементарных представлений микроуровня. В качестве способа разрешения этого несоответствия рассматривается переход на макроуровень описания.

Перечислим некоторые соответствующие макроуровню и специфичные для синергетики как интегрирующей области исследований понятия. Помимо параметра порядка, принципа подчинения, а также диссипативных структур [41], автоволн [1], неравновесных фазовых переходов, описываемых обобщенным уравнением Гинзбурга---Ландау [37], выделим интегрирующее понятие синергетики --- понятие активной кинетической среды. "Характерными признаками активных кинетических сред являются следующие: а) существует распределенный источник энергии или веществ, богатых энергией; б) каждый элементарный объем среды находится в состоянии, далеком от термодинамического равновесия, то есть является открытой термодинамической системой, в которой диссипирует часть энергии, поступающей из распределенного источника; в) связь между соседними элементарными объемами осуществляется за счет процессов переноса" [7]. Широкий класс Автоволновые процессов в рамках представления об активной кинетической среде описывается системой уравнений в частных производных параболического. В этой системе все волновые процессы порождаются динамикой точечной нелинейной системы. В.И.Кринский, А.М.Жаботинский полагают, что "это новый тип динамических процессов, порождающих макроскопический линейный масштаб за счет локальных взаимодействий, каждое из которых линейным масштабом не обладает" [1]. Системе [1] соответствует большинство задач, рассмотренных в рамках синергетики. Она является основной формой математического описания явлений пространственно--временной самоорганизации на макроуровне.

Перейдем к критическому анализу изложенных предметных представлений о системе взаимодействующих элементов, макроуровне описания, предметному представлению процесса с точки зрения принципа целостности.


ПРЕДМЕТНЫЙ УРОВЕНЬ ОПИСАНИЯ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ САМООРГАНИЗАЦИИ И ПРИНЦИП ЦЕЛОСТНОСТИ

Рассмотрим сначала один общий момент, связанный с использованием принципа целостности. Зададимся вопросом, что значит утверждение "некоторый теоретический объект является элементом целого?" В общем случае теоретический объект, являющийся элементом целого (целостности), может обладать тремя группами признаков (свойств). В--первых, это собственно целостные признаки, указывающие на принадлежность элемента данному целостному единству, сохраняющие, как было указано выше, "в специфической форме целостные свойства исследуемой системы". Во--вторых, это соотносительные признаки, определяющие взаимозависимость выделенных элементов целого[32---34]. Необходимость наличия соотносительных признаков определяется тем, что без них целостность предстанет в виде многообразия отдельных, независимых друг от друга, самостоятельно существующих объектов, что неадекватно представлению о единстве. Признаки обеих групп проявляются вследствие членения данного единства, являются результатом этого членения. В силу этих признаков элементы целого не могут быть даны вне целого и независимо от способа членения. Третью группу образуют признаки, которыми обладает теоретический объект вне связи с тем, что он является элементом целого. Это независимые признаки (или» положительные определенности") [32---34]. Сделав замечание общего характера, рассмотрим понятие системы взаимодействующих элементов. Абстрагируемая сначала от признаков элементов, определяющих их взаимодействие. Тогда мы будем иметь ансамбль невзаимодействующих элементов, ничем, вообще говоря, не отличающийся от математического множества элементов.

Образованию множества должно предшествовать постулирование многообразия объектов, обладающих независимыми признаками. Традиционно полагается, что "множество формируется путем простого акта объединения, собирания вместе объектов (из этого многообразия.--- Авт.), включаемых в него в качестве элементов" [33].Таким образом, полагается, что при объединении объектов во множество они не претерпевают никаких изменений, что и выражается в принятии аксиомы экстенсиональности, утверждающей, что всякое множество определено своими элементами (при этом под элементами множества понимается исходное многообразие объектов [32]). Г.А.Смирновпоказал, однако, что все процедуры образования и преобразования объектов в теории множеств подразумевают в неявном виде наличие у элементов множеств соотносительных различающих признаков, появляющихся вследствие объединения объектов. Теоретическому субъекту приписывается в рамках теории множеств способность объединять объекты в некоторое единство, а также соотносить, различать объекты, входящие в единство. Эти подразумеваемые признаки и указания способности никак не фиксируются в языке теории [32; 33].

Обсудим более подробно природу этой способности теоретического субъекта. На наш взгляд, она является пространственной. Именно теоретическому субъекту имманентно присуща способность к пространственному соотнесению. Теоретический субъект соотносит в пространственном отношении любые объекты, имеющие пространственные признаки. В качестве указания субъекту на выполнение этого соотнесения выступает сам факт данности таких объектов в мыследеятельности. И при образовании множества из многообразия объекты приобретают соотносительные признаки вследствие пространственного различения. Пространственный характер соотносительных признаков элементов множества, вообще говоря, вытекает из анализа объектов конструктивной математики, включающего сумму мест [32].

Помимо соотносительных признаков элементов множества, подразумеваются, но не фиксируются в языке теории их целостные признаки. На каком основании объекты, входившие в исходное многообразие и ставшие элементами множества, рассматриваются все вместе, что их объединяет? Элементы множества рассматриваются как принадлежащие некоторому единству постольку, поскольку они обладают целостными признаками. По нашему мнению, эти целостные признаки задает пространственная граница множества. Объекты из многообразия и граница множества даны в пространственном соотнесении, в силу которого объекты многообразия становятся элементами целостного единства, задаваемого границей. Элемент целостного единства --- это то, что находится "внутри границы". Признак "внутри границы" и является целостным признаком. Отметим, что граница множества, хотя это кажется на первый взгляд неожиданным, задает и целостное единство объектов, не принадлежавших множеству, и внешнюю среду в виде целостного единства. Действительно, элемент внешней среды ---это то, что лежит вне границы. Признак "вне границы" --- целостный признак элементов внешней среды.

В рамках теории множеств абстрагируются и от соотносительных, и от целостных признаков элементов целостного единства, образуемого из исходного многообразия независимых объектов на основе имманентно присущей теоретическому субъекту способности к пространственному соотнесению объектов, и фиксируют в языке теории лишь независимые признаки объектов, входивших в многообразие. Множество, таким образом, выступает как редуцированный, частичный объект по отношению к целостному единству. Соответственно нецелостным является и непосредственный предмет нашего рассмотрения --- ансамбль невзаимодействующих элементов.

Взаимодействие элементов предполагает изменение их независимых признаков. Поэтому наличие взаимодействия элементов с точки зрения целостности системы ничего не меняет.

Перейдем к рассмотрению макроуровня описания с точки зрения принципа целостности. На макроуровне, как мы указывали, в качестве содержательного используется представление о непрерывной среде. Исходным образованием, на основе которого складывается представление о непрерывной среде, является пространственный континуум. Пространственный континуум мыслится как целостное единство. В качестве элемента пространственного континуума может выступать точка, имеющая целостные и соотносительные признаки. Точка континуума не имеет, однако, независимых признаков; понятие о ней содержит потенциальную возможность их задания. Задание независимых признаков точек пространственного континуума происходит путем их «наполнения", или "начинки", некоторыми вещественными характеристиками --- плотностью вещества, напряженностью поля и т.д. Именно с этими независимыми признаками имеют дело при математическом описании. Для того чтобы математически описывать пространственный континуум, переходят к его редуцированной форме ---пространственному множеству с соответствующим отвлечением от целостных и соотносительных признаков точек континуума. Точка пространственного множества в силу этого отвлечения мыслится и существует сама по себе, вне соотнесения с другими точками. Поэтому точка пространственного множества не является элементом пространственной формы, например, диссипативной структуры. Этот момент фиксировал еще Аристотель, отмечавший, что линия не слагается из точек [2]. Действительно, точка равно принадлежит любой линии или поверхности, проходящей через нее, и в силу этого не может являться элементом какой--то конкретной линии или поверхности. Поэтому пространственное описание структур, возникающих в результате самоорганизации, не может быть целостным, если в качестве элемента структуры используется основной теоретический объект макроскопического уровня описания --- точка пространственного множества.