Смекни!
smekni.com

Синергетика: различные взгляды (стр. 4 из 43)

Отдельно необходимо отметить приложения различных отраслей синергетики в компьютерной технике и информатике. Их можно видеть на каждом шагу: устройства управления температурными режимами, автофокусировка оптических устройств, системы автоматического распознавания текста. Изучение структур и свойств фракталов неожиданно привело к появлению нового направления в изобразительном искусстве, сложность и естественность этих структур оказались необыкновенно эстетически привлекательны.


Литература

1. В. Васильев, Ю, Романовский, В. Яхно, Автоволновые процессы , М. Наука, 1987

2. А. Дьюдни, Акулы и рыбы в компьютерной модели // В мире науки 2 1985

3. А. Дьюдни, Исследование генетических алгоритмов // В мире науки 1 1986

4. А. Дьюдни, Недостатки электронного глаза // В мире науки 11 1984 г.

5. А. Дьюдни, Об аналоговых компьютерах // В мире науки 8 1984 г.

6. А. Дьюдни, Построение одномерных компьютеров // В мире науки 7 1985

7. А. Дьюдни, Странная привлекательность хаоса// В мире науки 9 1987 г.

8. А. Дьюдни, Трехмерные версии игры Жизнь // В мире науки 4 1987 г.

9. В. Коротков, Развитие концепции ноосферы на основе парадигмы синергетики,

10. Дж. Кратчфилд, Дж. Фармер, Н. Паккард, Р. Шоу Хаос // В мире науки, 2 1997 г.

11. А. Лоскутов, А. Михайлов, Введение в синергетику, М, Наука, 1990

12. Новое в синергетике: загадки мира неравновесных структур , М. Наука, 1996

13. Л. Сандер, Фрактальный рост // В мире науки 3 1987 г.

14. Дж. Силк, А. Салаи, Крупномасштабная структура вселенной // В мире науки 12 1983 г.

15. Дж. Уолкер, Восстанавливающиеся фазы // В мире науки 7 1987 г.

16. Г. Хакен, Синергетика, М. Мир , 1980

17. Б. Хейес, Клеточный автомат // В мире науки 5 1984 г.

18. У. Хиллис, Коммутационная машина// В мире науки 8 1987 г.

19. И. Эпстэйн, К. Кастин, П. Кеппер, М. Орбан, Колебательные химические реакции // В мире науки 5 1983 г.

Синергетическая модель динамики политического сознания

О.В.Митина, В.Ф.Петренко.

Политические, духовные, экологические кризисы - атрибут не только нашего общества на поворотном моменте истории. Кризисы переживают и стабильные, сложившиеся страны Запада. В данной связи интересы многих исследователей обращаются к синергетике. Это новое междисциплинарное направление возникло в начале 70-х годов [16, с. 229-242]. Одна из его главных задач - познание общих принципов, лежащих в основе процессов самоорганизации, реализующихся в системах самой разной природы: физических, биологических, технических и социальных.

Синергетический стиль научного мышления включает в себя, с одной стороны, вероятностное видение мира, получившее бурное развитие в XIX веке. С другой стороны, синергетику можно рассматривать как современный этап развития кибернетики и системных исследований. Концепции и идеи теории самоорганизации нашли свое выражение в таких взаимосвязанных областях как теория диссипативных структур [12], теория детерминированного хаоса [17; 24, с 130-141], теория катастроф [27]. При этом синергетика, не будучи жестко ориентированной совокупностью методологических принципов и понятий, скорее играет роль системной рефлексии и исходит не из однозначного общепринятого определения понятия "система", а из присущего ей набора свойств. Среди них - нелинейность, целостность, устойчивость структуры, процессы ее становления и самоорганизации, системный "эффект сложения", приводящий к тому, что входящие в систему элементы определяются в зависимости от целого, от координации с другими ее элементами и ведут себя совершенно иначе, нежели в случае их независимости. В естествознании под динамической системой понимается любой объект или процесс, для которого возможно определить понятие состояния как некоторого мгновенного описания этой системы, известного в любой момент времени. Состояние системы дает представление о системе в целом в конкретный момент времени. Смена состояний выражает изменение системы во времени и определяется как внешними воздействиями, так и самой системой.

Различают линейные и нелинейные динамические системы. Под системы линейной системы слабо взаимодействуют между собой и практически независимо входят в систему. Изменения ответа линейной системы на внешнее воздействие почти пропорционально этому воздействию. Линейные системы обладают свойством аддитивности, при котором целая система сводима к сумме составляющих ее частей.

Однако в большинстве системных исследований условия линейности не выполняются, и появляется необходимость изучать общие принципы возникновения и развития сложных динамических систем, описываемых более сложными, нелинейными моделями. Система не линейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами.

Нелинейная система имеет устойчивые и неустойчивые стационарные состояния. Причем одно и то же стационарное состояние такой системы при одних условиях может быть устойчивым, а при других неустойчивым. Устойчивые стационарные состоянии более присущи самой системе, а неустойчивые характеризуют моменты собственно изменений в ней. Изменяющиеся нелинейные системы отличают множественность стационарных состояний, единство их устойчивости и неустойчивости. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему и, может быть, непредсказуемого в определенные периоды времени.

Понятие "нелинейность" начинает использоваться все шире, приобретая мировоззренческий смысл. Идея нелинейности включает в себя многовариантность, альтернативность выбора путей эволюции и ее необратимость. Нелинейные системы испытывают влияние случайных, малых воздействий, порождаемых неравновесностью, нестабильностью, выражающихся в накоплениях флуктуаций, бифуркациях (ветвлениях путей эволюции), фазовых и самопроизвольных переходах. В таких системах возникают и поддерживаются локализованные процессы (структуры), в которых имеют место интеграция, архитектурное объединение структур по некоторым законам построения эволюционного целого, а также вероятностный (хаотический) распад этих структур на этапе нарастания их сложности [6, с. 148-161]. Нелинейные процессы невозможно надежно прогнозировать, ибо развитие совершается через случайность выбора пути в момент бифуркации, а сама случайность не повторяется вновь.

Именно в таких системах чаще всего возникают синергетические явления [12, 8]. При исследованиях сложных нелинейных систем можно выделить два различных подхода в зависимости от того, на что в первую очередь направлено внимание исследователя: на возможные сценарии прохождения точки бифуркации без детализации хаотического поведения в этот момент или непосредственно на поведение системы в хаосе (позиции "метанаблюдателя" и "наблюдателя" [2, с. 229-242]). Первый подход строится на модели структурно устойчивой системы, с единственной кризисной точкой - точкой бифуркации практически всегда находящейся в состоянии гомеостаза. Это взгляд наблюдателя извне. В арсенале синергетических методов такая ситуация описывается с помощью теории катастроф. Математический метод описания эволюции различных природных процессов был создан Р.Томом*.

В другом случае - это взгляд на процесс самоорганизации изнутри, когда наблюдатель включен в систему и его наблюдение за нестабильной системой, диалог с ней вносят неконтролируемые возмущения. Соответствующий аппарат развивается на базе теории динамического или детерминированного хаоса [13; 2]. Совокупность большого числа нелинейных осцилляторов, образующих систему, способна порождать особые структуры - аттракторы, выступающие для исследователя как "цели эволюции". Они могут быть как правильными, просто описываемыми структурами, так и хаотичными состояниями. В первом случае аттракторы характеризуются либо одним конечным состоянием, либо циклически повторяющимся процессом, задаваемым простой математической формулой. В системах же детерминированного хаоса аттракторы приобретают более сложную структуру и становятся "странными аттракторами". Это уже не точка и не предельный цикл, а сложно описываемая область, по которой происходят случайные блуждания.

Математически аттракторы определяются как предельные значения решений дифференциальных уравнений. Соответствующий аппарат был разработан А.Пуанкаре. Аттракторы характеризуются изображениями в фазовом пространстве (пространстве состояний системы, не за висящих от времени) - "фазовыми портретами". Геометрически это множество точек, к которому приближается траектория после затухания переходных процессов, то есть область притяжения соседних точек (to attract (англ.). - притягивать).

В теории диссипативных систем аттракторам и странным аттракторам, являющимся базисными фактами теории самоорганизации, уделяется особое внимание. С одной стороны, наличие странных аттракторов, приводящих к динамическому хаосу, становится причиной катастроф различных порядков, где возможна внезапная смена движений, переход из хаотического состояния в упорядоченное и обратно при изменении параметров системы. С другой стороны, некоторые особенности поведения хаотических систем удается предсказать (с конечной точностью и в ограниченных по времени пределах). Язык аттракторов позволяет осмыслить явления предсказуемости и принципиальной непредсказуемости, дает понимание вероятностного, хаотического поведения систем, обусловленного не ограниченностью наших исследовательских возможностей, а самой природой нелинейных систем.

Теория самоорганизации сложных динамических систем базируется на новых и глубоких теоремах, связанных с геометрией многомерных объектов. Эти теоремы позволяют классифицировать всевозможные случаи катастроф и странных аттракторов с помощью определенного числа типовых форм. В случаях, когда идеи синергетики используются для изучения конкретных физических, социальных и других процессов, под аттракторами понимаются реальные структуры в пространстве и времени, на которые выходят процессы самоорганизации.