Открытость системы знания в таком понимании характерна для ранних этапов построения теории и главным образом для процесса развития теоретического знания. Рассмотрим также и другие системные понятия.
Суммативностъ означает, что изменение любого элемента системы зависит только от него самого. Изменения всей системы - это "сумма изменений независимых друг от друга ее элементов (взаимодействие элементов в этом случае = 0, и фактически мы имеем дело с вырожденной системой).
Свойством суммативности обладают некоторые этапы эмпирического исследования (отдельные эксперименты и эмпирические описания объекта могут не зависеть друг от друга), а также первые шаги теоретического построения знания (когда еще не установлены общие принципы, объединяющие воедино элементы знания о некоторой предметной области). Однако в чистом виде суммативность научному знанию не присуща (в нем всегда имеется связь отдельных элементов, и свойством суммативности могут обладать лишь относительно обособленные фрагменты знания, да и то лишь на определенных этапах их развития). Для научного знания специфичен его целостный характер.
В отличие от суммативности целостность объекта означает, что изменение любого элемента системы оказывает воздействие на все другие элементы системы и приводит к изменению всей системы и, наоборот, изменение любого элемента зависит от изменения всех других элементов системы. Свойством целостности в этом смысле в полной мере обладают формальные дедуктивные системы знания.
Для открытых систем знания характерен переход от состояния суммативности (в определенной мере) к состоянию целостности. Этот процесс можно назвать систематизацией знания.
Противоположный процесс {механизация) - это переход от состояния целостности к состоянию суммативности. Он находит свое выражение в периоды крутой ломки сложившихся теоретических представлений (парадигм). Новая парадигма более суммативна, чем ее предшественница,- которая, проделав длительную эволюцию, максимально выявила свои целостные потенции. Будучи, однако, сформулированной, новая парадигма начинает свой цикл жизни, двигаясь от состояния относительной суммативности к состоянию целостности. Можно упомянуть еще два других аспекта, относящихся к развитию систем знания:
1)централизация - процесс увеличения коэффициентов взаимодействия у части или у отдельного элемента системы. В результате незначительные изменения этой части (ведущая часть системы) приводят к существенным изменениям всей системы. Роль ведущей части систем знания выполняют аксиомы, основные теоретические принципы и т.п.;
2)системам знания присущ иерархический принцип организации - отдельные элементы системы представляют собой системы низшего порядка, а рассматриваемая система выступает в качестве элемента системы более высокого порядка.
Проиллюстрируем в общих чертах вышеизложенное на примерах конкретной научной и учебной дисциплины - ландшафтоведения.
По утверждению одного из основоположников геохимии ландшафта А.И. Перельмана (1975 и др.), «ландшафт» — такое же фундаментальное понятие естествознания, как «химический элемент», «живой организм», «почва», «минерал». Большинство природных ландшафтов относится к биокосным системам, в которых живые организмы и неорганическая материя проникают друг в друга, тесно между собой связаны и взаимообусловлены. По степени сложности, «уровню организации материи» выделяется ряд биокосных систем.
К низшему — «доландшафтному уровню» относятся биокосные природные тела — подсистемы ландшафта: почвы, кора выветривания, континентальные отложения, поверхностные и грунтовые воды, приземная атмосфера. Каждая из них является предметом изучения самостоятельной науки. Взаимодействие этих тел создает новое качество, новую систему, поэтому необходима и особая наука для ее исследования — ландшафтоведение. Ландшафт — это большая и сложная неравновесная динамическая система земной поверхности, в которой происходят взаимодействие и взаимопроникновение элементов лито-, гидро- и атмосферы. К ландшафтному уровню организации относят два основных типа систем: «элементарный ландшафт» и «геохимический ландшафт».
К более высокому — «надландшафтному уровню организации» относятся биосфера Земли в целом и, вероятно, ряд промежуточных систем, которые еще предстоит установить (Мировой океан?).
Культурные ландшафты относятся к более сложному уровню организации. Здесь существует своя иерархия систем (культурный ландшафт, т.е. ноосфера).
Для развития теории ландшафта большое значение имеет общая теория систем, в частности, такие ее понятия, как система, структура, прямая и обратная связь, дифференциация, интеграция и др.Важной характеристикой любых систем является их структура, т.е. совокупность составных частей и способ связи между ними. Например, в определении географии как науки нередко подчеркивают, что это наука о связях между телами и явлениями на земной поверхности
По степени совершенства связей ландшафт сильно уступает таким системам, как кристаллы, атомы, организмы. Ландшафт — это система и с другой природой связей, и с более «расшатанными» связями, более слабой интеграцией.
По роли в ландшафте связи разделяются на прямые и обратные, а последние — еще и на положительные и отрицательные.
Для прямой (односторонней) связи характерно однонаправленное влияние отдельного тела (А) на другое (Б): А=>Б. К прямым связям относится влияние солнечной энергии на Землю, почвенных процессов на формирование коры выветривания, грунтовых вод на питание рек, отработки месторождений полезных ископаемых на потребление элементов в промышленности и т. д. Прямая связь чрезвычайно характерна для ландшафтов, во многих их типах она имеет ведущее значение.
Обратные связи выражаются во взаимодействии тел, когда не только А влияет на Б но и Б на А: А<=>Б. Они также характерны для ландшафтов: взаимодействие почва - растительность, растение — животное, промышленность — сельское хозяйство и т. д. Обратная связь положительна, когда результат процесса усиливает его, система развивается и все дальше уходит от исходного состояния. Пример - процесс засоления почв, при котором каждая новая порция соли, поступившая в почву из грунтовых вод, ухудшает условия жизни растений, способствует изреживанию растительного покрова и благоприятствует испарению с поверхности почвы, т. е. засолению. При зарастании озер также наблюдается положительная обратная связь. Отмирающие ежегодно растения служат материалом для образования сапропеля, глубина озера уменьшается, а зарастание увеличивается, озеро превращается в болото.
При отрицательной обратной связи результаты процесса ослабляют его действие и способствуют стабилизации системы, восстановлению ее исходного состояния: Так, рост растительной массы в ландшафте приводит к увеличению продуктов разложения растительных остатков — гумусовых кислот (промывая почву, они выщелачивают из нее питательные вещества, ухудшаются условия жизни растений, уменьшается растительная масса).
Благодаря обратной связи в ландшафте наблюдается саморегулирование: отклонение от устойчивого стационарного состояния вызывает изменения, уменьшающие эти отклонения.
По данным Д.И. Перельмана, «становление общей теории систем» произошло в 50 - 60-е годы XXвека и связано с трудами Л. Берталанфи, С. Бира, А. Ляпунова и др. Одним из первых исследователей в этой области был русский ученый А.А. Богданов, разработавший «всеобщую интеграционную науку» тектологию - предтечу современной теории систем (Перельман,1975).
4. Список использованной литературы.
1. Сочава В. Б. Введение в учение о геосистемах. Новосибирск: наука, 1985.
2. Перельман А. и. Геохимия ландшафта. М.: Высшая школа. 1989.
3. Преображенский В. С. Ландшафты в науке и практике. М.: Знание. 1987.
4. Исаченко А. Г. Ландшафтоведение и физико-географическое районирование. М.: Высшая школа, 1991.