Закон противоречия на протяжении всей истории логики считался одним из наиболее очевидных принципов. Римский философ-стоик Эпиктет так обосновал его необходимость: «Я хотел бы быть рабом человека, не признающего закона противоречия. Он велел бы мне подать себе вина, я дал бы ему уксуса или еще чего похуже. Он возмутился бы, стал бы кричать, что я даю ему не то, что он просил. А я сказал бы ему: ты не признаешь ведь закона противоречия, стало быть, что вино, что уксус, что какая угодно гадость – все одно и то же. И необходимости ты не признаешь, стало быть, никто не в силах принудить тебя воспринимать уксус как что-то плохое, а вино как хорошее. Пси уксус как вино и будь доволен. Или так: хозяин велел побрить себя. Я отхватываю ему бритвой ухо или нос. Опять начинаются крики, но я повторил бы ему свои рассуждения. И все делал бы в таком роде, пока не принудил бы хозяина признать истину, что необходимость непреоборима и закон противоречия всевластен». Смысл этого эмоционального комментария к принудительной силе закона противоречия сводится к идее, известной еще Аристотелю: из противоречия можно вывести все, что угодно. Тот, кто допускает противоречие в своих рассуждениях, должен быть готов к тому, что из распоряжения побрить будет выведена команда отрезать нос и т.п. Поскольку из противоречивого высказывания логически следует любое высказывание, появление в какой-то теории противоречия ведет к ее разрушению. В ней становится доказуемым все, что угодно, истина смешивается с ложью. Ценность такой теории становится близкой нулю.
В средние века активно обсуждался вопрос: подчиняется ли закону противоречия бог, могущество которого беспредельно? Большинство философов и теологов считало, что даже бог не может противоречить самому себе. В сущности, это означало, что бог не всевластен: выше его – законы логики и прежде всего закон, запрещающий противоречие.
К Аристотелю восходит традиция давать закону противоречия, как и ряду других логических законов, три разные интерпретации. В одном случае он истолковывается как принцип логики, говорящий о высказываниях и их истинности: из двух противоречащих высказываний одно должно быть ложным. В другом случае этот же закон понимается как утверждение о структуре самого реального мира: не может быть так, чтобы что-то одновременно существовало и не существовало, имело какой-то признак и не имело его. В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается размышлять о какой-либо вещи, таким образом, чтобы она оказывалась такой и вместе с тем не такой.
Иногда считается, что эти три варианта различаются между собой только словесно. На самом деле это не так. Устройство мира и своеобразие человеческого мышления – темы изучения эмпирических наук. Получаемые ими истины фактические, и значит, случайные. Принципы же логики совершенно иначе связаны с опытом и представляют собой логически необходимые истины. Допускаемое тремя указанными интерпретациями смешение теории бытия, психологии и логики, случайных и необходимых истин освящено долгой традицией, но лишено убедительных оснований.
Большинство неверных толкований закона противоречия и большая часть попыток оспорить его приложимость – если не во всех, то хотя бы в отдельных областях – связаны с неправильным пониманием логического отрицания, а значит, и противоречия.
Высказывание и его отрицание должны говорить об одном и том же предмете, рассматриваемом в одном и том же отношении. Эти два высказывания должны совпадать во всем, кроме единственной черты: то, что утверждается в одном, отрицается в другом. Если это забывается, противоречия нет, поскольку нет утверждения и отрицания.
В романе Ф. Рабле «Гаргантюа и Пантагрюэль» один из героев спрашивает философа Труйогана, стоит жениться или нет. Труйоган отвечает довольно загадочно: и стоит, и не стоит. Казалось бы, явно противоречивый, а потому невыполнимый и бесполезный совет. Но постепенно выясняется, что никакого противоречия здесь нет. Сама по себе женитьба – дело неплохое. Но плохо, когда, женившись, человек теряет интерес ко всему остальному. Видимость противоречия связана здесь с лаконичностью ответа Труйогана. Если же пренебречь соображениями риторики и, лишив ответ загадочности, сформулировать его полностью, станет ясно, что он непротиворечив и, может быть, даже небесполезен.
Нет противоречия, например, в утверждении «Осень настала и еще не настала», подразумевающем, что хотя по календарю уже осень, а тепло как летом. Его нет и в том, что, как говорит статистика, замужних женщин заметно больше, чем женатых мужчин: при переписи анкета заполняется со слов самого опрашиваемого.
Появление противоречия в какой-то теории – явный симптом ее неблагополучия. Тем не менее, ученые обычно не спешат расставаться с противоречивой теорией. Более того, они не всегда стремятся исключить противоречие сразу же, как только оно обнаружено. Чаще всего противоречие отграничивается от других положений, входящие в него утверждения проверяются и перепроверяются до тех пор, пока не будет выяснено, какое из них является ложным. В конце концов, ложное утверждение отбрасывается, и теория становится непротиворечивой. Только после этого можно быть уверенным в ее будущем.
Никто, пожалуй, не утверждает прямолинейно, что дождь идет и не идет, что трава зеленая и одновременно не зеленая. А если и утверждает, то только в каком-то переносном смысле. Противоречие вкрадывается в рассуждения, как правило, в неявном виде.
Чаще всего противоречие довольно легко вскрыть.
В одном из рассказов М. Твена о возбужденных людях говорится, что каждый из них размахивал руками энергичнее, чем его сосед. Понятно, что это невозможно, поскольку внутренне противоречиво.
Противоречиво и сообщение, будто в глухом австралийском селении живут два близнеца, один из которых на 12 лет старше другого, как и сообщение, что родился один близнец нормального роста и веса.
В начале века, когда автомобилей стало довольно много, в одном из английских графств было издано распоряжение, согласно которому если два автомобиля подъезжают одновременно к пересечению дорог под прямым углом, то каждый из них должен ждать, пока не проедет другой. Это распоряжение внутренне противоречиво, и потому невыполнимо.
Один тулузский врач, желая позабавиться, поместил в местной газете объявление: «В связи с выездом за границу продаю редкую историческую реликвию: череп Вольтера-ребенка». В течение педели он получил едва ли не сто запросов о цене.
Противоречие недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но, как очевидно уже из приведенных примеров, у противоречия в обычном языке много разных задач.
Оно может выступать в качестве основы сюжета какого-то рассказа, быть средством достижения особой художественной выразительности и т.д.
Если противоречие может сделаться «каналом духовной связи», оно не только допустимо, но даже необходимо.
Реальное мышление – и тем более художественное мышление – не сводится к одной логичности. В нем важно все: и ясность, и неясность, и доказательность и зыбкость, и точноеопределение и чувственный образ. В нем может оказаться нужным и противоречие, если оно стоит на своем месте.
Нелогично утверждать и отрицать одновременно одно и то же. Но каждому хорошо понятно двустишие римского поэта I в. до н.э. Катулла:
Да! Ненавижу и вместе люблю. – Как возможно, ты спросишь?
Не объясню я. Но так чувствую, смертно томясь.
«…Все мы полны противоречий. Каждый из нас – просто случайная мешанина несовместимых качеств. Ученые, изучающие науку логику, скажут вам, что абсурдно утверждать, будто желтый цвет имеет цилиндрическую форму, а благодарность тяжелее воздуха; но в той смеси абсурдов, которая составляет человеческое «я», желтый цвет вполне может оказаться лошадью с тележкой, а благодарность – серединой будущей недели». Этот отрывок из романа С. Моэма «Луна и грош» выразительно подчеркивает сложность, а нередко и прямую противоречивость душевной жизни человека. «…Человек знает, что хорошо, но делает то, что плохо», – с горечью замечал Сократ.
Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, непросто: то, что в процессе развития и развертывания теории не выведено никаких противоречий, еще не означает, что их, в самом деле, нет. Научная теория – очень сложная система утверждений. Далеко не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений. Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ньютона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда.
Есть, однако, теория, в случае которой десятилетия упорнейших усилий не дали ответа на вопрос, является она непротиворечивой или нет. Это – математическая теория множеств, лежащая в основе всей математики. Немецкий математик Г. Вейль заметил по этому поводу с грустным юмором: «Бог существует, поскольку математика, несомненно, непротиворечива, но существует и дьявол, поскольку доказать ее непротиворечивость мы не можем».
4. Закон исключенного третьего
Закон исключенного третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. Он утверждает: из двух противоречащих высказываний одно является истинным.
Символически: Av– A, А или не – А. Например: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее» и т.п. Само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет.