Смекни!
smekni.com

Оценка обстановки при возникновении чрезвычайных ситуаций (стр. 2 из 4)

где Zm– амплитуда земных колебаний, мкм.

Реальная интенсивность (Jреал) землетрясения и степень разрушения зданий и сооружений будет зависеть от типа грунта как под застройкой, так и на остальной окружающей местности:

; (3)

Где

Jпост – приращение балльности для грунта (по сравнению с гранитом), на котором построено здание;
Jо.м. – приращение балльности для грунта в окружающей местности (табл. 1)

Таблица 1 - Значения

Jпост,
J о.м
Тип грунта
Jпост,
J о.м
Тип грунта
Jпост,
J о.м
Гранит 0 Песчаные 1,6
Известняк 0,52 Глинистые 1,61
Щебень, гравий 0,92 Насыпные рыхлые 2,6
Полускальные грунты 1,36

Все здания и типовые сооружения традиционной постройки (без антисейсмических мероприятий) подразделяются на три группы, каждой из которых свойственна определенная сейсмостойкость (табл. 2).

При сочетании в одном здании признаков двух или трех типов здание в целом следует относить к слабейшему из них.


Таблица 2 - Классификация зданий и сооружений по сейсмостойкости (Jc)

Группа Характеристика здания Jс, баллы
А А1 Здания со стенами из местных строительных материалов: глинобитные без каркаса; саманные или из сырцового кирпича без фундамента; выполненные из скатанного или рваного камня на глиняном растворе и без регулярной (из кирпича или камня правильной формы)кладки в углах и т. п. 4
А2 Здания со стенами из самана или сырцового кирпича; с каменными, кирпичными или бетонными фундаментами; выполненные из рваного камня на известковом, цементном или сложном растворе с регулярной кладкой в углах; выполнение из пластового камня на известковом, цементном или сложном растворе; выполненные из кладки типа «мидис»; здания с деревянным каркасом с заполнением из самана или глины, с тяжелыми земляными или глиняными крышами; сплошные массивные ограды из самана или сырцового кирпича и т. п. 4,5
Б Б1 Здания с деревянным каркасом с заполнением из самана или глины и легкими перекрытиями 5
Б2 Типовые здания из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе: сплошные ограды и стенки, трансформаторные киоски, силосные и водонапорные башни 5,5
В В1 Деревянные дома, рубленные «в лапу»или «в обло» 6
В2 Типовые железобетонные, каркасные, крупнопанельные и армированные крупноблочные дома; железобетонные сооружения: силосные и водонапорные башни, маяки, подпорные стенки, бассейны и т. п. 6,5
С С1 Типовые здания и сооружения всех видов (кирпичные, блочные, панельные, бетонные, деревянные, щитовые и др.) с антисейсмическими мероприятиями для расчетной сейсмичности 7 баллов 7
С2 То же для расчетной сейсмичности 8 баллов 8
С3 То же для расчетной сейсмичности 9 баллов 9

3. оценка обстановки при авариях, сопровождающихся пожарами

Основным поражающим факторам пожаров является термическое воздействие, обусловленное тепловым излучением пламени.

Термическое воздействие определяется величиной плотности потока поглощенного излучения qПОГЛ (кВт/м2) и временем теплового излучения

(с).

Плотность потока поглощенного излучения qПОГЛ связана с плотностью потока падающего излучения qПАД соотношением qПОГЛ =

qПАД, где
- степень черноты (поглощательная способность) тепловоспринимающей поверхности. Чем ниже степень черноты (больше отражательная способность), тем меньше при прочих равных условия величина qПОГЛ (далее q, кВт/м2).

Человек ощущает сильную (едва переносимую) боль, когда температура верхнего слоя кожи превышает 45 °С. Время достижения «порога боли»

(с) определяется по формуле
(4)

Различают три степени термического ожога кожи человека (табл. 3).

Таблица 3 - Характеристики ожогов кожи человека

Степень ожога Повреждаемый слой Характеристика Доза воздействия, кДж/м2
I Эпидермис Покраснения кожи Менее 42
II Дерма Волдыри 42-84
III Подкожный слой Летальный исход при поражении более 50% кожи Более 84

Время воспламенения горючих материалов

(с) при воздействии на них теплового потока плотностью q (кВт/м2) определяется по формуле:

(5)

где qкр — критическая плотность теплового потока, кВт/м2; А, n — константы для конкретных материалов (например, для древесины A = 4300, n = 1,61).

Особенно опасным является нагрев резервуаров с нефтепродуктами, которые могут воспламеняться при воздействии теплового излучения (табл. 4).

Таблица 4 - Время воспламенения

резервуара с нефтепродуктами в зависимости от величины плотности потока теплового излучения q
q, кВт/м2 34,9 27,6 24,8 21,4 19,9 19,5
5 10 15 20 29 Более 30

При применении вероятностного подхода к определению поражающего фактора теплового воздействия на человека значения Рпор определяют по с использованием для случая летального исхода при термическом поражении следующего выражения для пробит - функции Рr:

(6)

Время термического воздействия

(с) для случаев пожара разлития и горения здания (сооружения, штабеля и т. п.) равно

(7)

где

— характерное время обнаружения пожара (допускается принимать 5 с); x — расстояние от места расположения человека до зоны, где плотность потока теплового излучения не превышает 4 кВт/м2, м; u — скорость движения человека (допускается принимать 5 м/с).

Для случая огненного шара время термического воздействия принимается равным времени существования огненного шара.


4. Оценка радиационной обстановки

4.1 Понятие радиационной безопасности

Радиационная безопасность населения – состояние защищенности настоящего и будущего поколения людей от вредного для их здоровья воздействия ионизирующего излучения.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи (внешнее облучение), и если радиоактивные вещества пополи внутрь человека с воздухом, водой, через открытую рану или другим путем (внутреннее облучение).

Внутреннее и внешнее облучение человека происходит от природных и искусственных источников ионизирующего излучения.

Источник ионизирующего излучения – устройство или радиоактивное вещество, испускающее или способное испускать ионизирующее излучение.

Радиационная безопасность населения обеспечивается ограничением воздействия от всех основных видов облучения. Свойства источников и возможности регулирования различных видов облучения существенно разнятся. Поэтому регламентация обеспечения радиационной безопасности производится для каждого источника отдельно с использованием различных методологических подходов и технических способов.

4.2 Радиоактивное загрязнение при разрушении (аварии) объектов ядерно-топливного цикла и перевозке радиоактивных материалов

В случае возникновения аварии, при которой облучение людей превысит основные пределы доз от техногенного источника облучения, должны быть приняты практические меры для восстановления контроля над источником и сведения к минимуму доз облучения, количества облучаемых лиц из населения, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.

Процесс принятия решения по мерам защитных мероприятий (вмешательство) чрезвычайно сложен и включает множество факторов, в том числе и не связанных с радиацией. Обычно к основным факторам относят следующие: масштаб аварии, безопасность проживания, проблемы здравоохранения, стрессы, переселение, низкий уровень доверия и понимания, риск загрязнения водных ресурсов и т.д.