Смекни!
smekni.com

Философское понимание материи 2 (стр. 4 из 6)

http://psylib.org.ua/books/hokin01/index.htm — 20.03.09

Эйнштейн высказал предположение революционного характера: гравитация – это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределенными в нем массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривленным орбитам гравитационной силой; они движутся по линиям, которые в искривленном пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими. Геодезическая – это самый короткий (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли есть искривленное двумерное пространство. Геодезическая на Земле называется большим кругом и является самым коротким путем между двумя точками (рис. 2.8). Поскольку самый короткий путь между двумя аэропортами – по геодезической, диспетчеры всегда задают пилотам именно такой маршрут. Согласно общей теории относительности, тела всегда перемещаются по прямым в четырехмерном пространстве-времени, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям. (Понаблюдайте за самолетом над холмистой местностью. Сам он летит по прямой в трехмерном пространстве, а его тень перемещается по кривой на двумерной поверхности Земли).

Масса Солнца так искривляет пространство-время, что, хотя Земля движется по прямой в четырехмерном пространстве, мы видим, что в нашем трехмерном пространстве она движется по круговой орбите. Орбиты планет, предсказываемые общей теорией относительности, почти совпадают с предсказаниями ньютоновской теории тяготения. Однако в случае Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное действие гравитации и имеет довольно вытянутую орбиту, общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца примерно на один градус в десять тысяч лет. Несмотря на его малость, этот эффект был замечен еще до 1915 г. и рассматривался как одно из подтверждений теории Эйнштейна. В последние годы радиолокационным методом были измерены еще меньшие отклонения орбит других планет от предсказаний Ньютона, и они согласуются с предсказаниями общей теории относительности.

Рис. 2.9

Лучи света тоже должны следовать геодезическим в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях, и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке (рис. 2.9). Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется.

В нормальных условиях этот эффект очень труден для наблюдения, так как яркий солнечный свет не позволяет видеть звезды, находящиеся на небе рядом с Солнцем. Но такая возможность появляется во время солнечного затмения, когда Луна перекрывает солнечный свет. В 1915 г. никто не смог сразу проверить предсказанное Эйнштейном отклонение света, потому что шла Первая мировая война. Лишь в 1919 г. английская экспедиция в Западной Африке, наблюдавшая там солнечное затмение, показала, что свет действительно отклоняется Солнцем так, как и предсказывала теория. То, что английские ученые доказали правильность теории, родиной которой была Германия, приветствовалось как еще один великий акт примирения обеих стран после войны. Но, хотя это выглядит иронично, проведенный позднее анализ фотографий, полученных этой экспедицией, показал ошибки измерения того же порядка, что и измеряемый эффект. Результат англичан был либо чистым везением, либо тем нередким в науке случаем, когда получают то, что хотелось получить. Правда, отклонение света Солнцем было впоследствии точно подтверждено целым рядом наблюдений.

Еще одно предсказание общей теории относительности состоит в том, что вблизи массивного тела типа Земли время должно течь медленнее. Это следует из того, что должно выполняться определенное соотношение между энергией света и его частотой (т. с. числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх в гравитационном поле Земли, то он теряет энергию, а потому его частота уменьшается. (Это означает, что увеличивается интервал времени между гребнями двух соседних волн). Наблюдателю, расположенному на большой высоте, должно казаться, что внизу все происходит медленнее. Это предсказание было проверено в 1962 г. с помощью двух очень точных часов, расположенных: одни на самом верху водонапорной башни, а вторые – у ее подножья.

Оказалось, что нижние часы, которые были ближе к Земле, в точном соответствии с общей теорией относительности шли медленнее. Разница в ходе часов на разной высоте над поверхностью Земли приобрела сейчас огромное практическое значение в связи с появлением очень точных навигационных систем, работающих на сигналах со спутников. Если не принимать во внимание предсказаний общей теории относительности, то координаты будут рассчитаны с ошибкой в несколько километров!

Законы движения Ньютона покончили с абсолютным положением в пространстве. Теория относительности освободила нас от абсолютного времени. Возьмем пару близнецов. Предположим, что один из них отправился жить на вершину горы, а другой остался на уровне моря. Тогда первый состарится быстрее, чем второй, и поэтому при встрече один из них будет выглядеть старше другого. Правда, разница в возрасте была бы совсем мала, но она сильно увеличилась бы, если бы один из близнецов отправился в долгое путешествие на космическом корабле со скоростью, близкой к скорости света. По возвращении он оказался бы значительно моложе своего брата, который оставался на Земле. Это так называемый парадокс близнецов, но он парадокс лишь для того, кто в глубине души верит в абсолютное время. В общей теории относительности нет единого абсолютного времени; каждый индивидуум имеет свой собственный масштаб времени, зависящий от того, где этот индивидуум находится и как он движется.

До 1915 г. пространство и время воспринимались как некая жесткая арена для событий, на которую все происходящее на ней никак не влияет. Так обстояло дело даже в специальной теории относительности. Тела двигались, силы притягивали и отталкивали, но время и пространство просто оставались самими собой, их это не касалось. И было естественно думать, что пространство и время бесконечны и вечны.

В общей же теории относительности ситуация совершенно иная. Пространство и время теперь динамические величины: когда движется тело или действует сила, это изменяет кривизну пространства и времени, а структура пространства-времени в свою очередь влияет на то, как движутся тела и действуют силы. Пространство и время не только влияют на все, что происходит во Вселенной, но и сами изменяются под влиянием всего в ней происходящего. Как без представлений о пространстве и времени нельзя говорить о событиях во Вселенной, так в общей теории относительности стало бессмысленным говорить о пространстве и времени за пределами Вселенной.

В последующие десятилетия новому пониманию пространства и времени предстояло произвести переворот в наших взглядах на Вселенную. Старое представление о почти не меняющейся Вселенной, которая, может быть, всегда существовала и будет существовать вечно, сменилось картиной динамической, расширяющейся Вселенной, которая, по-видимому, возникла когда-то в прошлом и, возможно, закончит свое существование когда-то в будущем. Эта революция в нашем сознании (ей будет посвящена следующая глава) явилась отправной точкой моих исследований в теоретической физике. Мы с Роджером Пенроузом показали, что, согласно общей теории относительности Эйнштейна, Вселенная должна иметь начало, а может быть, и конец.

Пригожин И. Философия нестабильности// Вопросы философии.— 1991. — № 6. — С. 46 — 57.

По­ря­док и бес­по­ря­док

Се­го­дня мы зна­ем, что уве­ли­че­ние эн­тро­пии от­нюдь не сво­дит­ся к уве­ли­че­нию бес­по­ряд­ка, ибо по­ря­док и бес­по­ря­док воз­ни­ка­ют и су­ще­ст­ву­ют од­но­вре­мен­но. На­при­мер, ес­ли в две со­еди­нен­ные ём­ко­сти по­мес­тить два га­за, до­пус­тим, во­до­род и азот, а за­тем по­дог­реть од­ну ём­кость и ох­ла­дить дру­гую, то в ре­зуль­та­те, из-за раз­ни­цы тем­пе­ра­тур, в од­ной ём­ко­сти бу­дет боль­ше во­до­ро­да, а в дру­гой азо­та. В дан­ном слу­чае мы име­ем де­ло с дис­си­па­тив­ным про­цес­сом, ко­то­рый, с од­ной сто­ро­ны, тво­рит бес­по­ря­док и од­но­вре­мен­но, с дру­гой, по­то­ком те­п­ла соз­да­ет по­ря­док: во­до­род в од­ной ём­ко­сти, азот — в дру­гой. По­ря­док и бес­по­ря­док, та­ким об­ра­зом, ока­зы­ва­ют­ся тес­но свя­зан­ны­ми — один вклю­ча­ет в се­бя дру­гой. И эту кон­ста­та­цию мы мо­жем оце­нить как глав­ное из­ме­не­ние, ко­то­рое про­ис­хо­дит в на­шем вос­при­ятии уни­вер­су­ма се­го­дня.

Дол­гое вре­мя на­ше ви­де­ние ми­ра ос­та­ва­лось не­пол­ным. Как не­пол­ным бу­дет, ска­жем, вид, от­кры­ваю­щий­ся из ок­на са­мо­ле­та при под­ле­те к Ве­не­ции: по­ка в по­ле на­ше­го зре­ния на­хо­дят­ся ве­ли­че­ст­вен­ные зда­ния и пло­ща­ди, нас не ос­тав­ля­ет об­раз со­вер­шен­ной, упо­ря­до­чен­ной, гран­ди­оз­ной струк­ту­ры. По при­бы­тии в го­род мы об­на­ру­жи­ва­ем и не слиш­ком чис­тую во­ду, и на­зой­ли­вую мош­ка­ру, но имен­но та­ким пу­тем пе­ред на­ми пред­ста­ют обе сто­ро­ны объ­ек­та. Что ка­са­ет­ся со­вре­мен­но­го ви­де­ния ми­ра, то ин­те­рес­но от­ме­тить, что кос­мо­ло­гия те­перь все ми­ро­зда­ние рас­смат­ри­ва­ет как в зна­чи­тель­ной ме­ре бес­по­ря­доч­ную — а я бы ска­зал, как су­ще­ст­вен­но бес­по­ря­доч­ную — сре­ду, в ко­то­рой вы­кри­стал­ли­зо­вы­ва­ет­ся по­ря­док. Но­вей­шие же ис­сле­до­ва­ния по­ка­за­ли, что на ка­ж­дый мил­ли­ард те­п­ло­вых фо­то­нов, пре­бы­ваю­щих в бес­по­ряд­ке, при­хо­дит­ся по край­ней ме­ре од­на эле­мен­тар­ная час­ти­ца, спо­соб­ная сти­му­ли­ро­вать в дан­ном мно­же­ст­ве фо­то­нов пе­ре­ход к упо­ря­до­чен­ной струк­ту­ре. Так, по­ря­док и бес­по­ря­док со­су­ще­ст­ву­ют как два ас­пек­та од­но­го це­ло­го и да­ют нам раз­лич­ное ви­де­ние ми­ра.